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APPENDIX A
IMPLEMENTATION DETAILS

Our GAN implementation was inspired by Zhu et al.’s
work [1]. This includes the use of residual blocks [2], in-
stance normalization [3], and PatchGANs in the discrimina-
tors [4]. However, we made some important modifications,
especially on the generators architecture, for improving the
handling of high frequencies. The final architecture can be
found in Appendix B. For training, we used the Adam
optimizer [5] with default parameters and learning rate of
0.0002, linearly decaying to zero in the course of 2 epochs
(totaling more than 800k iteration updates). We used batch
size of 1. Specifically for training the discriminator, we
followed the idea of Shrivastava et al. [6] of updating the
discriminator using a history of generated images.

APPENDIX B
NETWORK ARCHITECTURES

Generators’ architecture. The architecture of our F and G
generators were designed to better handle high-frequency
content. Let Ck-f denote a k× k 2D convolution layer with
f filters, and let Res-k represent a residual block consisting
of a Reflection padding, Conv layer, Reflection padding and
another Conv layer, in this order, where both Conv layers
use 3 × 3 kernels and k filters. Ref represents a Reflection
padding layer, and BN is a batch-normalization layer. All
Conv layers are followed by an Instance-Normalization
layer and a ReLU. The architecture of the generators is
as follows: Ref, C7-64, Res-64, Res-64, Res-64,
Res-64, Res-64, Ref, C7-64, BN (Fig. 4, top).
Discriminators’ architecture. We have used the same ar-
chitecture as Zhu et al. [1] for the discriminators DX and
DY . Following the same notation of names defined above,
and considering that for the discriminator all Conv layers
are followed by Instance-Normalization and leaky-ReLU
(with decay of 0.2), the discriminator architecture consists
of: C4-64, C4-128, C4-256, C4-512 (Fig. 4, bottom).
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TABLE 1
Chosen σ for different pair of domains (ISO levels).

Mapping Chosen σ
100, 400 1.5
100, 800 2.5
100, 1600 3.5
100, 3200 4.5
200, 1600 2.5

APPENDIX C
CHOOSING σ FOR LOW-FREQUENCY LOSS

For extracting the low-frequency content used for comput-
ing the low-frequency-consistency loss term, we perform
a Gaussian Blur with a pre-defined σ on each patch. The
noise found in higher ISO levels (normally encoded in the
higher frequencies) has greater intensity compared to lower
ISO levels. Thus, we use different σ values for different
mappings (e.g. ISO 100→1600 vs. ISO 100→3200). But rather
than choosing the values empirically, we pick σ based on
the dataset containing scenes captured on each ISO level
(Section 5.2). Thus, for each pair of domains (e.g., 100→1600,
200→1600), we linearly search for the σ value that satisfies
the following inequality:

MSE(Gσ(x),Gσ(y)) < 0.005, (1)

where MSE is the mean-squared error between the blurred
versions of x (image belonging to domain X) and y (belong-
ing to domain Y ), and G is a Gaussian blur implemented as
a convolution by a 21 × 21 kernel with the appropriate σ
(measured in pixels). We choose a low-threshold in Eq. (1)
(0.005) to enforce the blurred versions to be at least similar.
The σ values chosen for each mapping of the experiments
can be found in Table 1.

APPENDIX D
EVALUATION NETWORK ARCHITECTURES

All classifiers, for natural versus artificial noise (Section 6.2),
for identifying the ISO level of a given patch (Section 5.2),
and for noise-model classification (Section 6.3) share similar
architectures. All networks take as input a 128 × 128 RGB
patch, and the patch’s Fourier amplitude coefficients for
each channel in log-space and in their shifted version (i.e.,
with the DC term translated to the center of the matrix
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representation). Thus, each classifier takes a 128 × 128 × 6
input, and outputs one (for the case of natural noise classifi-
cation), six (for the case of ISO level identification), or seven
probabilities (for discriminating among noise models).

Let Ck-f denote a k × k Conv layer with f filters and
stride = k/2 + 1, followed by a ReLU; and M2 a 2 × 2
max-pooling layer. Also, let Fl denote a flattening layer,
FC-n a fully-connected layer with n hidden units, also
followed by a ReLU. Let Dp-d be a dropout layer with
d representing the fraction (between [0, 1]) of units that
will be randomly set to 0, Sig the sigmoid activation
function, and Soft the Softmax activation function. The
architecture for the natural-noise classifier is as follows:
C5-256, C5-256, C5-256, M2, C3-256, C3-256,
C3-256, M2, C3-256, C3-256, M2, C3-256, M2,
Fl, FC-128, Dp-0.2, FC-64, Dp-0.1, FC-1, Sig.

The architecture of the ISO-level classifier is similar,
replacing the last two layers with: FC-6, Soft.

The architecture of the noise-model classifier replaces the
last two layers with: FC-7, Soft.

The natural-noise classifier uses the binary cross-entropy
as loss function, while the ISO-level identifier and noise-
model classifier use the categorical cross-entropy. All network
training used the Adam optimizer with default parameters
and learning rate of 0.001, batch size of 12, and trained
for 2000 iterations. We also employed data augmentation:
horizontal and vertical flips, random crops, and random 90◦

rotations.

APPENDIX E
COMPUTATION OF KL DIVERGENCE AND KS-VALUE

We use the following Python methods for computing the KL
divergence and KS-value for our experiments, where p and
q are the normalized histograms of noise being compared:

import numpy as np

def kl div ( p , q ) :
idx = ( p > 0) & ( q > 0)
p = p [ idx ]
q = q [ idx ]
return np . sum( p * np . log ( p/q ) )

def ks value ( p , q ) :
cum p = np . cumsum( p )
cum q = np . cumsum( q )
return np . max ( np . abs ( cum p − cum q ) )

Each noise histogram is computed from pixels obtained
by the subtraction of the clean image from the noisy one,
which extracts only the (per channel) additive noise compo-
nent. Input images are stored with 8-bits per channel and as
such the noise components are in the range [−255, 255], but
mostly concentrated around zero. Histograms are computed
with the numpy.histogram function with 50 bins evenly
distributed in [−50, 50], and two additional bins for the
extremes: “bins = np.concatenate(([-256], np.arange(-50, 50,
2), [256]), axis=0) - 0.1”. The bins’ intervals are shifted by
−0.1 to avoid quantization artifacts. Finally, as mentioned in
Section 6.4, we compute these metrics for each color channel,
which are then averaged together.
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Fig. 1. Comparison among noise models for synthesizing noise for ISO
400. (a) Patch corrupted by AWGN (using average std computed from
the paired dataset, in this case σ400 = 0.0420); (b) patch corrupted
by AWGN+Poisson in linear space; (c) patch corrupted by Noise Flow
(applied in raw space); (d) patch corrupted by our GANSIDD; (e) the noisy
patch; and (f) the clean patch.

APPENDIX F
COMPUTATION OF KL DIVERGENCE AND KS-VALUE

Table 2 compares the KS divergence and KL-values over
all population patches (see Section 6.4) for the following
noise models: AWGN and AWGN+Poisson (both in sRGB
and linear space), Noise Flow, and GANSIDD.

APPENDIX G
ADDITIONAL COMPARISONS

Here we show more comparisons among different noise
models. Figs. 1 to 4 compare closeups of photographs
captured by several cameras and lighting conditions for
ISO 400, ISO 800, ISO 1600, and ISO 3200, respectively.
Note how the results produced by our models consistently
achieve better (lower) KL and KS scores, and look more
similar to the corresponding ground truth images. For better
visualization, we opt to show only the most competitive
noise models: AWGN, AWGN+Poisson (in linear space),
Noise Flow, and ours.

APPENDIX H
RESIDUAL COMPARISON

Fig. 5 exhibit only the synthesized noise (residual), i.e., the
difference between the noisy and clean versions. For better
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TABLE 2
KL divergences and KS values for different noise models, ISO values, and lighting conditions ([L]ow and [N]ormal light brightness levels). Best

(lower) values are highlighted in bold. These values were measured over the whole population of image patches. Notice how our method achieves
better values for these metrics across all but one case.

ISO 400 ISO 800 ISO 1600 ISO 3200
L N L N L N L N

KL divergence

AWGN 0.0910 0.1063 0.0938 0.1108 0.1780 0.1478 0.0765 0.0796
AWGN (linear) 0.3204 0.1358 0.2053 0.1009 0.0731 0.1785 0.0580 0.0374
AWGN+Poisson 0.0559 0.0912 0.0938 0.1110 0.1782 0.1478 0.0764 0.0807
AWGN+Poisson (linear) 0.1358 0.0781 0.2053 0.1010 0.0732 0.1786 0.0784 0.0383
NoiseFlow 0.1052 0.1557 0.0593 0.1140 0.0517 0.0634 0.0801 0.0520
GANSIDD 0.0091 0.0323 0.0104 0.0249 0.0228 0.0129 0.0339 0.0188

KS value

AWGN 0.0693 0.0787 0.0842 0.0909 0.1096 0.1237 0.1100 0.0896
AWGN (linear) 0.1700 0.1000 0.1521 0.0726 0.0937 0.1277 0.0784 0.0629
AWGN+Poisson 0.1806 0.0693 0.0842 0.0910 0.1096 0.1236 0.1100 0.0895
AWGN+Poisson (linear) 0.1000 0.0668 0.1520 0.0726 0.0937 0.1277 0.0784 0.0628
NoiseFlow 0.1138 0.1422 0.0900 0.1057 0.0929 0.0821 0.1270 0.0925
GANSIDD 0.0333 0.0564 0.0404 0.0550 0.0600 0.0643 0.0761 0.0677
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Fig. 2. Comparison among noise models for synthesizing noise for ISO
800. (a) Patch corrupted by AWGN (using average std computed from
the paired dataset, in this case σ800 = 0.0536); (b) patch corrupted
by AWGN+Poisson in linear space; (c) patch corrupted by Noise Flow
(applied in raw space); (d) patch corrupted by our GANSIDD; (e) the noisy
patch; and (f) the clean patch.

visualization, we take the absolute value and multiply it by
3. Notice how our method better mimics camera noise, spe-
cially regarding the size of noise grain and color distribution
(check residual images).

AWGN

AWGN
+Poisson
(linear)

Noise
Flow Ours

Ground
Truth Clean

16
00

L
N

6 KL = 0.1921
KS = 0.1127

KL = 0.0504
KS = 0.0626

KL = 0.0327
KS = 0.0508

KL = 0.0549
KS = 0.0570

16
00

L
S6

KL = 0.2751
KS = 0.1306

KL = 0.0394
KS = 0.0589

KL = 0.1769
KS = 0.1954

KL = 0.0303
KS = 0.0813

16
00

N
N

6 KL = 0.1104
KS = 0.0979

KL = 0.0519
KS = 0.0676

KL = 0.0550
KS = 0.0698

KL = 0.0232
KS = 0.0563

16
00

N
S6

KL = 0.2193
KS = 0.0908

KL = 0.3207
KS = 0.1318

KL = 0.1562
KS = 0.1745

KL = 0.0296
KS = 0.0654

16
00

N
IP

KL = 0.2478
KS = 0.1646

KL = 0.4923
KS = 0.2182

KL = 0.1238
KS = 0.1200

KL = 0.0379
KS = 0.0803

16
00

N
G

P KL = 0.1890
KS = 0.1230

KL = 0.0802
KS = 0.0663

KL = 0.0767
KS = 0.0886

KL = 0.0668
KS = 0.0611

(a) (b) (c) (d) (e) (f)

Fig. 3. Comparison among noise models for synthesizing noise for ISO
1600. (a) Patch corrupted by AWGN (using average std computed from
the paired dataset, in this case σ1600 = 0.0714); (b) patch corrupted
by AWGN+Poisson in linear space; (c) patch corrupted by Noise Flow
(applied in raw space); (d) patch corrupted by our GANSIDD; (e) the noisy
patch; and (f) the clean patch.

APPENDIX I
DATA AUGMENTATION ON DENOISER TRAINING

For the DnCNN experiments described in Section 7, besides
using random 90o rotations, we also augmented the training
dataset using patches defined as

αxnoisy + (1− α) yclean,

where xnoisy is a noisy patch synthesized by the noise
model, yclean is the corresponding clean image (noise free),
and α is an interpolation parameter whose value is ran-
domly selected from a uniform distribution in [0.7, 1] (val-
ues chosen empirically). Despite its simplicity, such strategy
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Fig. 4. Comparison among noise models for synthesizing noise for ISO
3200. (a) Patch corrupted by AWGN (using average std computed from
the paired dataset, in this case σ3200 = 0.1352); (b) patch corrupted
by AWGN+Poisson in linear space; (c) patch corrupted by Noise Flow
(applied in raw space); (d) patch corrupted by our GANSIDD; (e) the noisy
patch; and (f) the clean patch.

helped to improve the denoiser’s PSNR (around 2 dB) by
delaying overfitting (our optimizer was able to train an
additional epoch when using such augmentation).
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Fig. 5. Comparison of synthesized noisy images and corresponding
noise (residual) produced by the various methods. For better visual-
ization, contrast of the residual images has been enhanced by factor
of 3×. Our results better mimic the noise found in digital photographs
(note noise grain and color distribution).


