
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Synthesizing Camera Noise using Generative
Adversarial Networks

Bernardo Henz, Eduardo S. L. Gastal, and Manuel M. Oliveira

F

APPENDIX A
IMPLEMENTATION DETAILS

Our GAN implementation was inspired by Zhu et al.’s
work [1]. This includes the use of residual blocks [2], in-
stance normalization [3], and PatchGANs in the discrimina-
tors [4]. However, we made some important modifications,
especially on the generators architecture, for improving the
handling of high frequencies. The final architecture can be
found in Appendix B. For training, we used the Adam
optimizer [5] with default parameters and learning rate of
0.0002, linearly decaying to zero in the course of 2 epochs
(totaling more than 800k iteration updates). We used batch
size of 1. Specifically for training the discriminator, we
followed the idea of Shrivastava et al. [6] of updating the
discriminator using a history of generated images.

APPENDIX B
NETWORK ARCHITECTURES

Generators’ architecture. The architecture of our F and G
generators were designed to better handle high-frequency
content. Let Ck-f denote a k× k 2D convolution layer with
f filters, and let Res-k represent a residual block consisting
of a Reflection padding, Conv layer, Reflection padding and
another Conv layer, in this order, where both Conv layers
use 3 × 3 kernels and k filters. Ref represents a Reflection
padding layer, and BN is a batch-normalization layer. All
Conv layers are followed by an Instance-Normalization
layer and a ReLU. The architecture of the generators is
as follows: Ref, C7-64, Res-64, Res-64, Res-64,
Res-64, Res-64, Ref, C7-64, BN (Fig. 4, top).
Discriminators’ architecture. We have used the same ar-
chitecture as Zhu et al. [1] for the discriminators DX and
DY . Following the same notation of names defined above,
and considering that for the discriminator all Conv layers
are followed by Instance-Normalization and leaky-ReLU
(with decay of 0.2), the discriminator architecture consists
of: C4-64, C4-128, C4-256, C4-512 (Fig. 4, bottom).

• Bernardo Henz, Eduardo S. L. Gastal and Manuel M. Oliveira are with
UFRGS. E-mails: bhenz, eslgastal, oliveira@inf.ufrgs.br.

Manuscript received December 13, 2019.

TABLE 1
Chosen σ for different pair of domains (ISO levels).

Mapping Chosen σ
100, 400 1.5
100, 800 2.5
100, 1600 3.5
100, 3200 4.5
200, 1600 2.5

APPENDIX C
CHOOSING σ FOR LOW-FREQUENCY LOSS

For extracting the low-frequency content used for comput-
ing the low-frequency-consistency loss term, we perform
a Gaussian Blur with a pre-defined σ on each patch. The
noise found in higher ISO levels (normally encoded in the
higher frequencies) has greater intensity compared to lower
ISO levels. Thus, we use different σ values for different
mappings (e.g. ISO 100→1600 vs. ISO 100→3200). But rather
than choosing the values empirically, we pick σ based on
the dataset containing scenes captured on each ISO level
(Section 5.2). Thus, for each pair of domains (e.g., 100→1600,
200→1600), we linearly search for the σ value that satisfies
the following inequality:

MSE(Gσ(x),Gσ(y)) < 0.005, (1)

where MSE is the mean-squared error between the blurred
versions of x (image belonging to domain X) and y (belong-
ing to domain Y), and G is a Gaussian blur implemented as
a convolution by a 21 × 21 kernel with the appropriate σ
(measured in pixels). We choose a low-threshold in Eq. (1)
(0.005) to enforce the blurred versions to be at least similar.
The σ values chosen for each mapping of the experiments
can be found in Table 1.

APPENDIX D
EVALUATION NETWORK ARCHITECTURES

All classifiers, for natural versus artificial noise (Section 6.2),
for identifying the ISO level of a given patch (Section 5.2),
and for noise-model classification (Section 6.3) share similar
architectures. All networks take as input a 128 × 128 RGB
patch, and the patch’s Fourier amplitude coefficients for
each channel in log-space and in their shifted version (i.e.,
with the DC term translated to the center of the matrix

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

representation). Thus, each classifier takes a 128 × 128 × 6
input, and outputs one (for the case of natural noise classifi-
cation), six (for the case of ISO level identification), or seven
probabilities (for discriminating among noise models).

Let Ck-f denote a k × k Conv layer with f filters and
stride = k/2 + 1, followed by a ReLU; and M2 a 2 × 2
max-pooling layer. Also, let Fl denote a flattening layer,
FC-n a fully-connected layer with n hidden units, also
followed by a ReLU. Let Dp-d be a dropout layer with
d representing the fraction (between [0, 1]) of units that
will be randomly set to 0, Sig the sigmoid activation
function, and Soft the Softmax activation function. The
architecture for the natural-noise classifier is as follows:
C5-256, C5-256, C5-256, M2, C3-256, C3-256,
C3-256, M2, C3-256, C3-256, M2, C3-256, M2,
Fl, FC-128, Dp-0.2, FC-64, Dp-0.1, FC-1, Sig.

The architecture of the ISO-level classifier is similar,
replacing the last two layers with: FC-6, Soft.

The architecture of the noise-model classifier replaces the
last two layers with: FC-7, Soft.

The natural-noise classifier uses the binary cross-entropy
as loss function, while the ISO-level identifier and noise-
model classifier use the categorical cross-entropy. All network
training used the Adam optimizer with default parameters
and learning rate of 0.001, batch size of 12, and trained
for 2000 iterations. We also employed data augmentation:
horizontal and vertical flips, random crops, and random 90◦

rotations.

APPENDIX E
COMPUTATION OF KL DIVERGENCE AND KS-VALUE

We use the following Python methods for computing the KL
divergence and KS-value for our experiments, where p and
q are the normalized histograms of noise being compared:

import numpy as np

def kl div (p , q) :
idx = (p > 0) & (q > 0)
p = p [idx]
q = q [idx]
return np . sum(p * np . log (p/q))

def ks value (p , q) :
cum p = np . cumsum(p)
cum q = np . cumsum(q)
return np . max (np . abs (cum p − cum q))

Each noise histogram is computed from pixels obtained
by the subtraction of the clean image from the noisy one,
which extracts only the (per channel) additive noise compo-
nent. Input images are stored with 8-bits per channel and as
such the noise components are in the range [−255, 255], but
mostly concentrated around zero. Histograms are computed
with the numpy.histogram function with 50 bins evenly
distributed in [−50, 50], and two additional bins for the
extremes: “bins = np.concatenate(([-256], np.arange(-50, 50,
2), [256]), axis=0) - 0.1”. The bins’ intervals are shifted by
−0.1 to avoid quantization artifacts. Finally, as mentioned in
Section 6.4, we compute these metrics for each color channel,
which are then averaged together.

AWGN

AWGN
+Poisson
(linear)

Noise
Flow Ours

Ground
Truth Clean

40
0L

N
6

KL = 0.0797
KS = 0.0804

KL = 0.2151
KS = 0.1321

KL = 0.1320
KS = 0.1185

KL = 0.0657
KS = 0.0604

40
0L

S6

KL = 0.1040
KS = 0.0852

KL = 0.1017
KS = 0.0806

KL = 0.2948
KS = 0.2396

KL = 0.0518
KS = 0.0630

40
0L

IP

KL = 0.0716
KS = 0.0619

KL = 0.3119
KS = 0.1534

KL = 0.1019
KS = 0.1071

KL = 0.0390
KS = 0.0545

40
0N

G
4 KL = 0.1364

KS = 0.0961
KL = 0.0872
KS = 0.0753

KL = 0.2201
KS = 0.1730

KL = 0.0862
KS = 0.0915

40
0N

N
6 KL = 0.1454

KS = 0.1014
KL = 0.1200
KS = 0.0894

KL = 0.2196
KS = 0.1604

KL = 0.0885
KS = 0.0823

40
0N

IP

KL = 0.0939
KS = 0.0827

KL = 0.0925
KS = 0.0860

KL = 0.1512
KS = 0.1375

KL = 0.0407
KS = 0.0686

40
0N

G
P KL = 0.1902

KS = 0.1158
KL = 0.1700
KS = 0.1071

KL = 0.1947
KS = 0.1543

KL = 0.0653
KS = 0.1086

(a) (b) (c) (d) (e) (f)

Fig. 1. Comparison among noise models for synthesizing noise for ISO
400. (a) Patch corrupted by AWGN (using average std computed from
the paired dataset, in this case σ400 = 0.0420); (b) patch corrupted
by AWGN+Poisson in linear space; (c) patch corrupted by Noise Flow
(applied in raw space); (d) patch corrupted by our GANSIDD; (e) the noisy
patch; and (f) the clean patch.

APPENDIX F
COMPUTATION OF KL DIVERGENCE AND KS-VALUE

Table 2 compares the KS divergence and KL-values over
all population patches (see Section 6.4) for the following
noise models: AWGN and AWGN+Poisson (both in sRGB
and linear space), Noise Flow, and GANSIDD.

APPENDIX G
ADDITIONAL COMPARISONS

Here we show more comparisons among different noise
models. Figs. 1 to 4 compare closeups of photographs
captured by several cameras and lighting conditions for
ISO 400, ISO 800, ISO 1600, and ISO 3200, respectively.
Note how the results produced by our models consistently
achieve better (lower) KL and KS scores, and look more
similar to the corresponding ground truth images. For better
visualization, we opt to show only the most competitive
noise models: AWGN, AWGN+Poisson (in linear space),
Noise Flow, and ours.

APPENDIX H
RESIDUAL COMPARISON

Fig. 5 exhibit only the synthesized noise (residual), i.e., the
difference between the noisy and clean versions. For better

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

TABLE 2
KL divergences and KS values for different noise models, ISO values, and lighting conditions ([L]ow and [N]ormal light brightness levels). Best

(lower) values are highlighted in bold. These values were measured over the whole population of image patches. Notice how our method achieves
better values for these metrics across all but one case.

ISO 400 ISO 800 ISO 1600 ISO 3200
L N L N L N L N

KL divergence

AWGN 0.0910 0.1063 0.0938 0.1108 0.1780 0.1478 0.0765 0.0796
AWGN (linear) 0.3204 0.1358 0.2053 0.1009 0.0731 0.1785 0.0580 0.0374
AWGN+Poisson 0.0559 0.0912 0.0938 0.1110 0.1782 0.1478 0.0764 0.0807
AWGN+Poisson (linear) 0.1358 0.0781 0.2053 0.1010 0.0732 0.1786 0.0784 0.0383
NoiseFlow 0.1052 0.1557 0.0593 0.1140 0.0517 0.0634 0.0801 0.0520
GANSIDD 0.0091 0.0323 0.0104 0.0249 0.0228 0.0129 0.0339 0.0188

KS value

AWGN 0.0693 0.0787 0.0842 0.0909 0.1096 0.1237 0.1100 0.0896
AWGN (linear) 0.1700 0.1000 0.1521 0.0726 0.0937 0.1277 0.0784 0.0629
AWGN+Poisson 0.1806 0.0693 0.0842 0.0910 0.1096 0.1236 0.1100 0.0895
AWGN+Poisson (linear) 0.1000 0.0668 0.1520 0.0726 0.0937 0.1277 0.0784 0.0628
NoiseFlow 0.1138 0.1422 0.0900 0.1057 0.0929 0.0821 0.1270 0.0925
GANSIDD 0.0333 0.0564 0.0404 0.0550 0.0600 0.0643 0.0761 0.0677

AWGN

AWGN
+Poisson
(linear)

Noise
Flow Ours

Ground
Truth Clean

80
0L

G
4

KL = 0.1048
KS = 0.1008

KL = 0.1200
KS = 0.0919

KL = 0.0856
KS = 0.0841

KL = 0.0223
KS = 0.0414

80
0L

N
6

KL = 0.1401
KS = 0.0995

KL = 0.1295
KS = 0.0950

KL = 0.0608
KS = 0.0748

KL = 0.0510
KS = 0.0584

80
0L

S6

KL = 0.1516
KS = 0.0882

KL = 0.0907
KS = 0.0761

KL = 0.2142
KS = 0.2077

KL = 0.0175
KS = 0.0598

80
0L

G
P

KL = 0.1009
KS = 0.0799

KL = 0.3856
KS = 0.1920

KL = 0.0642
KS = 0.0746

KL = 0.0445
KS = 0.0521

80
0N

N
6 KL = 0.1632

KS = 0.0861
KL = 0.0523
KS = 0.0595

KL = 0.1176
KS = 0.1120

KL = 0.0770
KS = 0.0729

80
0N

S6

KL = 0.2470
KS = 0.0866

KL = 0.2216
KS = 0.1407

KL = 0.1866
KS = 0.1852

KL = 0.0181
KS = 0.0547

80
0N

IP

KL = 0.1951
KS = 0.1473

KL = 0.3027
KS = 0.1701

KL = 0.1090
KS = 0.1118

KL = 0.0629
KS = 0.1055

80
0N

G
P KL = 0.1566

KS = 0.1266
KL = 0.0816
KS = 0.0800

KL = 0.1560
KS = 0.1300

KL = 0.0606
KS = 0.0906

(a) (b) (c) (d) (e) (f)

Fig. 2. Comparison among noise models for synthesizing noise for ISO
800. (a) Patch corrupted by AWGN (using average std computed from
the paired dataset, in this case σ800 = 0.0536); (b) patch corrupted
by AWGN+Poisson in linear space; (c) patch corrupted by Noise Flow
(applied in raw space); (d) patch corrupted by our GANSIDD; (e) the noisy
patch; and (f) the clean patch.

visualization, we take the absolute value and multiply it by
3. Notice how our method better mimics camera noise, spe-
cially regarding the size of noise grain and color distribution
(check residual images).

AWGN

AWGN
+Poisson
(linear)

Noise
Flow Ours

Ground
Truth Clean

16
00

L
N

6 KL = 0.1921
KS = 0.1127

KL = 0.0504
KS = 0.0626

KL = 0.0327
KS = 0.0508

KL = 0.0549
KS = 0.0570

16
00

L
S6

KL = 0.2751
KS = 0.1306

KL = 0.0394
KS = 0.0589

KL = 0.1769
KS = 0.1954

KL = 0.0303
KS = 0.0813

16
00

N
N

6 KL = 0.1104
KS = 0.0979

KL = 0.0519
KS = 0.0676

KL = 0.0550
KS = 0.0698

KL = 0.0232
KS = 0.0563

16
00

N
S6

KL = 0.2193
KS = 0.0908

KL = 0.3207
KS = 0.1318

KL = 0.1562
KS = 0.1745

KL = 0.0296
KS = 0.0654

16
00

N
IP

KL = 0.2478
KS = 0.1646

KL = 0.4923
KS = 0.2182

KL = 0.1238
KS = 0.1200

KL = 0.0379
KS = 0.0803

16
00

N
G

P KL = 0.1890
KS = 0.1230

KL = 0.0802
KS = 0.0663

KL = 0.0767
KS = 0.0886

KL = 0.0668
KS = 0.0611

(a) (b) (c) (d) (e) (f)

Fig. 3. Comparison among noise models for synthesizing noise for ISO
1600. (a) Patch corrupted by AWGN (using average std computed from
the paired dataset, in this case σ1600 = 0.0714); (b) patch corrupted
by AWGN+Poisson in linear space; (c) patch corrupted by Noise Flow
(applied in raw space); (d) patch corrupted by our GANSIDD; (e) the noisy
patch; and (f) the clean patch.

APPENDIX I
DATA AUGMENTATION ON DENOISER TRAINING

For the DnCNN experiments described in Section 7, besides
using random 90o rotations, we also augmented the training
dataset using patches defined as

αxnoisy + (1− α) yclean,

where xnoisy is a noisy patch synthesized by the noise
model, yclean is the corresponding clean image (noise free),
and α is an interpolation parameter whose value is ran-
domly selected from a uniform distribution in [0.7, 1] (val-
ues chosen empirically). Despite its simplicity, such strategy

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

AWGN

AWGN
+Poisson
(linear)

Noise
Flow Ours

Ground
Truth Clean

32
00

L
N

6 KL = 0.1040
KS = 0.1319

KL = 0.1590
KS = 0.1459

KL = 0.0742
KS = 0.1404

KL = 0.0455
KS = 0.0994

32
00

L
S6

KL = 0.0868
KS = 0.1141

KL = 0.0488
KS = 0.0715

KL = 0.1867
KS = 0.2108

KL = 0.0520
KS = 0.0952

32
00

N
N

6 KL = 0.1172
KS = 0.1123

KL = 0.0444
KS = 0.0538

KL = 0.0452
KS = 0.0748

KL = 0.0313
KS = 0.0718

32
00

N
S6

KL = 0.0758
KS = 0.0820

KL = 0.0624
KS = 0.0712

KL = 0.1555
KS = 0.1795

KL = 0.0401
KS = 0.0759

32
00

N
G

P KL = 0.1046
KS = 0.1186

KL = 0.4276
KS = 0.2329

KL = 0.0471
KS = 0.0890

KL = 0.0312
KS = 0.0669

(a) (b) (c) (d) (e) (f)

Fig. 4. Comparison among noise models for synthesizing noise for ISO
3200. (a) Patch corrupted by AWGN (using average std computed from
the paired dataset, in this case σ3200 = 0.1352); (b) patch corrupted
by AWGN+Poisson in linear space; (c) patch corrupted by Noise Flow
(applied in raw space); (d) patch corrupted by our GANSIDD; (e) the noisy
patch; and (f) the clean patch.

helped to improve the denoiser’s PSNR (around 2 dB) by
delaying overfitting (our optimizer was able to train an
additional epoch when using such augmentation).

REFERENCES

[1] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in IEEE
ICCV, 2017, pp. 2242–2251.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE CVPR, 2016, pp. 770–778.

[3] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance normal-
ization: The missing ingredient for fast stylization,” CoRR, vol.
abs/1607.08022, 2016.

[4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” CVPR, 2017.

[5] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” 12 2014.

[6] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, “Learning from simulated and unsupervised images
through adversarial training,” in IEEE CVPR, 2017.

AWGN

AWGN
+Poisson
(linear)

Noise
Flow Ours

Ground
Truth

no
is

y
40

0L

KL = 0.1040
KS = 0.0852

KL = 0.1017
KS = 0.0806

KL = 0.2948
KS = 0.2396

KL = 0.0518
KS = 0.0630

re
si

du
e

40
0L

no
is

y
80

0N

KL = 0.2082
KS = 0.1455

KL = 0.6620
KS = 0.2706

KL = 0.2262
KS = 0.1820

KL = 0.0768
KS = 0.0959

re
si

du
e

80
0N

no
is

y
16

00
L

KL = 0.2751
KS = 0.1306

KL = 0.0394
KS = 0.0589

KL = 0.1769
KS = 0.1954

KL = 0.0303
KS = 0.0813

re
si

du
e

16
00

L
no

is
y

16
00

N

KL = 0.1676
KS = 0.0836

KL = 0.3697
KS = 0.1555

KL = 0.1281
KS = 0.1639

KL = 0.0148
KS = 0.0510

re
si

du
e

16
00

N
no

is
y

32
00

L

KL = 0.0897
KS = 0.1251

KL = 0.0380
KS = 0.0682

KL = 0.1528
KS = 0.1907

KL = 0.0386
KS = 0.0897

re
si

du
e

32
00

L
no

is
y

32
00

N

KL = 0.0645
KS = 0.0824

KL = 0.0596
KS = 0.0750

KL = 0.1312
KS = 0.1678

KL = 0.0242
KS = 0.0704

re
si

du
e

32
00

N

Fig. 5. Comparison of synthesized noisy images and corresponding
noise (residual) produced by the various methods. For better visual-
ization, contrast of the residual images has been enhanced by factor
of 3×. Our results better mimic the noise found in digital photographs
(note noise grain and color distribution).

