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Synthesizing Camera Noise using Generative
Adversarial Networks

Bernardo Henz, Eduardo S. L. Gastal, and Manuel M. Oliveira

Abstract—We present a technique for synthesizing realistic noise for digital photographs. It can adjust the noise level of an input
photograph, either increasing or decreasing it, to match a target ISO level. Our solution learns the mappings among different ISO levels
from unpaired data using generative adversarial networks. We demonstrate its effectiveness both quantitatively, using Kullback-Leibler
divergence and Kolmogorov-Smirnov test, and qualitatively through a large number of examples. We also demonstrate its practical
applicability by using its results to significantly improve the performance of a state-of-the-art trainable denoising method. Our technique
should benefit several computer-vision applications that seek robustness to noisy scenarios.

Index Terms—Noise model, GANs, Deep learning
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1 INTRODUCTION

NOISE is a fundamental problem in graphics, im-
age processing, and computer vision, and many

image-denoising techniques have been proposed in recent
years [1], [2], [3], [4], [5]. While some of these approaches
are highly successful in removing artificial additive white
Gaussian noise (AWGN), recent works [6], [7], [8] have
shown that the performance of such techniques is severely
reduced when applied to real photographs. This is particu-
larly true for the case of recent deep learning strategies [9],
[10]. The main difficulty faced by these techniques results
from the fact that noise found in digital photographs, which
we refer to as natural noise (in opposition to synthetic noise),
has multiple sources (e.g., thermal, quantization, etc.), being
much more complex than just white Gaussian noise.

While the importance of noise reduction is well un-
derstood, increasing noise level is also very useful. It can
provide data for training techniques that need to handle
noisy scenarios. These include, for instance, improving the
performance of denoisers (as we will demonstrate), clas-
sifiers for low-light and challenging conditions [11], [12],
[13]; performing superresolution in the presence of differ-
ent noise levels [14]; performing noise reduction during
demosaicing [15]; and detecting forgeries based on noise
statistics [16]. These and other applications would benefit
from the synthesis of realistic noise.

Although many works have studied the nature of noise
theoretically [17], [18], [19], [20], no denoising technique
seems to be able to directly use such information. We
propose a practical data-driven solution for synthesizing
noise that can, for instance, be used for training/fine-tuning
denoising algorithms intended for real-world applications.
Our technique can adjust the noise level of an input pho-
tograph to match a target ISO level. Fig. 1 illustrates the
process: a photograph captured with ISO 100 (left) has its
noise level adjusted to ISO 1600 (blue arrow). Likewise,
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another photograph of the same scene taken with ISO 1600
(right) has its noise level adjusted to ISO 100 (red arrow).

The noise distributions of the highlighted patches for the
ISO 1600 photograph (Real 1600) and the one generated by
our technique (Synthetic 1600) have a Kullback-Leibler (KL)
divergence of 0.0617 and the result of their Kolmogorov-
Smirnov (KS) test is 0.0878 (with a p-value of 7.81×10−220),
indicating that such distributions are very similar. Since we
use the ISO 100 photograph as baseline for estimating the
noise distributions, we cannot apply the same tests to ISO
100 patches. For this reason, Fig. 1 shows the PSNR value
(29.13) computed for the image generated by our technique
(Synthetic 100). Such value indicates good agreement with
the patch of the actual ISO 100 photograph (Real 100).

Although it would be preferable to directly use noise
variance instead of ISO levels for parameterizing a
noise-adjustment process, existing variance-estimation tech-
niques [21], [22], [23], [24] do not provide reliable estimates,
as they consider additive white Gaussian noise (AWGN).
ISO level, in turn, is a readily available and reliable infor-
mation, which justifies our choice. As robust noise variance-
estimation techniques become available, our approach can
be adapted to use them.

To perform noise-level adjustment, we use a convolu-
tional neural network (CNN). Unfortunately, the availability
of datasets containing paired photographs captured under
different ISO settings is limited, and creating a large one is a
non-trivial task. Thus, we designed our technique to use un-
paired datasets. We modify the cycle-consistency loss, and
introduce a low-frequency-consistency loss term to preserve
the contrast of the input image in the synthesized one. An
ablation study shows how these changes and our modified
generator architecture lead to high-frequency content that
approximates natural noise (Section 5.1).

Fig. 2 compares the results produced by our technique
with the ones generated with AWGN, Gaussian-Poissonian
(AWGN+Poisson) and with Noise Flow [25] for various
ISO levels and different smartphone camera models. For
the three techniques, each noisy result was obtained by
corrupting the corresponding clean patch provided as part
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Fig. 1. Using our technique to adjust the noise level of photographs to different ISO values. A photograph captured with ISO 100 (left) has its noise
level adjusted to ISO 1600 (blue arrow). Likewise, another photograph of the same scene taken with ISO 1600 (right) has its noise level adjusted to
ISO 100 (red arrow). The noise distributions for patches Real 1600 and Synthetic 1600 have a Kullback-Leibler (KL) divergence of 0.0617 and the
result of their Kolmogorov-Smirnov (KS) test is 0.0878 (with a p-value of 7.81 × 10−220), indicating that the two distributions are very similar. The
red, green, and blue histograms underneath patch Real 1600 show the noise distributions corresponding to the R, G, and B channels of patch Real
1600, respectively. The superimposed gray histograms are the corresponding noise distributions for the patch Synthetic 1600. The PSNR value
computed for patch Synthetic 100 is 29.13, also indicating a good agreement with patch Real 100.

of the SIDD (Smartphone Image Denoising Dataset) dataset.
Each clean image in SIDD was obtained after processing 150
pictures taken from the same scene [8]. AWGN and our
technique were applied in sRGB space, while Noise Flow
was applied in raw space. The numbers inside synthesized
patches are values of the KL divergence and the KS test
computed with respect to the corresponding ground truth,
which consists of an actual photograph captured at the
target ISO level. For all examples shown in Fig. 2, the
images synthesized by our method obtained KL and KS
results significantly smaller (better), and textures similar to
the corresponding ground truths.

We validate our technique both quantitatively and qual-
itatively. For this, we use KL divergence, KS test, discrimi-
native evaluation, and t-SNE visualizations. Together, these
evaluations show that the proposed model generates noise
much closer to natural than existing techniques. Finally,
we demonstrate a practical application of our technique: a
significant improvement in the performance of a state-of-
the-art denoiser (Section 7).

The contributions of this work include:
• A method for adjusting the noise level of an input photo-

graph to match a target ISO level (Section 4). Its results
produce significantly better approximations to natural
noise than previous synthetic noise generators;

• A new loss formulation for use with CycleGANs for allow-
ing the adjustment of noise level (Section 4.4). Such new
loss function results in more realistic noise, whose
statistics approximate the ones of real photographs
with the same ISO value;

• A large (unpaired) dataset containing over 2.1 million
256 × 256 patches from photographs captured under
different ISO values with a Canon Rebel T3i (Section 5).
The distribution of patches per ISO level is balanced,
and the patches did not undergo any denoising,
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Fig. 2. Comparison of synthesized noise obtained by corrupting a
clean patch for different ISO values and camera models. AWGN and
AWGN+Poisson use the average noise variances computed from the
SIDD paired dataset, in sRGB and linear space, respectively. Noise
Flow are applied in raw space. Our results achieved the best (smaller)
KL divergence and KS values, and exhibit textures similar to the cor-
responding ground truths (actual photographs taken at the target ISO
levels). The clean images are provided as part of the SIDD dataset.

making this a suitable dataset for denoising and
noise-synthesis applications.

2 RELATED WORK

Our technique focus on adjusting the noise level of an im-
age. Next, we discuss works on denoising, noise synthesis,
and paired noise datasets.
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2.1 Denoising Methods
Denoising is a well-studied problem and several techniques
have been proposed to handle it. Among them, many meth-
ods model image priors based on non-local similarities [1],
[26], [27], sparse representations [28], [29], [30], [31], total-
variation optimization [32], [33], and Markov-Random-Field
(MRF) models [34], [35], [36]. Such methods have high-
computational costs, heavily relying on the selection of
parameter values.

Discriminative learning methods focus on learning in-
ference functions, either based on random-field architec-
tures [37], reaction-diffusion models [10], [38], or conditional
random fields [39], [40]. Recently, deep learning has become
a trend on denoising methods. Jain and Seung proposed one
of the first methods to use CNNs for denoising [41]. Burguer
et al. [4] showed how a plain multi-layer perceptron (MLP)
trained on large datasets can compete with BM3D [1]. Xie
et al. combine sparse coding and denoising autoencoders
to address low-level-vision problems such as denoising and
inpainting [42]. Mao et al. proposed an autoencoder archi-
tecture with symmetric skip connections, training a single
model to handle different noise levels [43]. Zhang et al. used
a single residual CNN, combined with batch-normalization
layers, for blind Gaussian denoising [9]. Later, Guo et al.
proposed a convolutional blind denoising network (CBD-
Net) [44] trained with a noise model more complex than
AWGN, surpassing existing methods on benchmarks with
real photographs. Lehtinen et al. introduced the idea of
learning to denoise using pairs of corrupted images [45].
While it removes the necessity of laboriously collecting
noisy-clean pairs for the denoiser training, it still requires
at least two realizations of each scene.

The majority of these methods rely on pairs of clean
and corrupted images, either to find optimal parameters (for
approaches based on image priors), or to fully train discrim-
inative learning techniques. We emphasize that our technique
is not intended to replace denoising methods. On the contrary, it
benefits them by providing more realistic training data, as
we demonstrate in the paper.

A recent work by Brooks et al. [46] proposes a tech-
nique to invert the transformations performed during the
imaging-processing pipeline (gain, color correction, etc.)
before performing denoising. Our work, on the other hand,
learns how the entire pipeline affects noise. The two tech-
niques could be combined, with our method applied to the
“untransformed” images produced by their approach.

2.2 Noise Synthesis
Besides AWGN, a few additional synthetic noise models
have been proposed. Foi et al. [47] described one of the
first models to try to improve AWGN by combining Pois-
sonian and Gaussian noise. Hwang et al. use a Skellam
distribution for modeling Poisson photon noise [48]. More
recent approaches propose in-camera imaging models, be-
ing able to account for cross-channel noise modeling [49],
[50]. Similar to the works described in [49], [50], our data-
driven approach takes into account the in-camera pipeline,
both in terms of how it can modify the captured noise
(e.g., through gamut mapping or demosaicing), as well as
accounting for other sources of noise (e.g., quantization).

Unlike [49], [50], our method provides a practical solution
that learns the marginal distribution of patches with a given
ISO setting, allowing it to map an input image from one
ISO setting to another. Newson et al. [51] and Eckel et
al. [52] presented techniques that try to faithfully model film
noise. The work most similar to ours is Noise Flow [25]: a
recent machine-learning approach that seeks to minimize
the negative log-likelihood (NLL) between the generated
and ground-truth noise. We show that our method, besides
not needing paired data, is capable of training a denoiser
with superior performance compared to Noise Flow.

2.3 Paired Noise Datasets
Recently, researchers have built paired datasets with images
captured with different ISO settings. Anaya and Barbu [6]
constructed a dataset obtained under low-light conditions,
taken with a point-and-shoot (Canon PowerShot S90), a
DSLR (Canon EOS Rebel T3i), and a mobile (Xiaomi Mi3)
camera. They captured pairs of images (shot at ISO 100 and
at a higher ISO value), and showed how to align the pixel
intensity values from the pairs of images taken with the
same camera. Plotz and Roth [7] propose a similar dataset,
capturing images using four different consumer cameras
(Sony A7R, Olympus OMD E-M10, Sony RX100 IV, and
Nexus 6P), with different sensor sizes. They also propose a
post-processing procedure based on the heteroscedastic To-
bit regression model to align pixel intensities. Abdelhamed
et al. [8] presented the SIDD dataset consisting of 10 scenes,
each captured with five smartphone cameras and using
different lighting conditions. All these works show that
many recent techniques trained for denoising AWGN [4],
[30], [37], [38] are outperformed by BM3D [1] when applied
to natural noise. This suggests that the use of AWGN (either
for training or evaluation) does not generalize well for the case of
natural noise.

For training our generative model, we have built a large
unpaired dataset containing over 2.1 million 256× 256 image
patches taken from photographs captured under different
ISO settings (from 100 to 3200) using a Canon Rebel T3i
camera. We refer to it as our T3i dataset (to avoid confusion
with Renoir T3i [6]). our T3i has a balanced distribution of
ISO levels, and consists of sRGB images with no denoising
applied. It is a valuable resource for training denoising and
noise-synthesis applications. We intend to make this dataset
publicly available.

3 GENERATIVE ADVERSARIAL NETWORKS

This section provides a brief review of Generative Adver-
sarial Networks (GANs), touching on concepts that will
be relevant for following sections. GANs were introduced
by Goodfellow et al. [53], with many variations appearing
in the following years [54], [55], [56]. A GAN consists of
two neural networks – a generator and a discriminator –
that are trained together, often aiming to learn to generate
images from a specific domain. While the generator focuses
on learning how to map data from a latent space to the
target domain, the discriminator learns to distinguish actual
elements of the target domain from ones synthesized by the
generator. This strategy offers training benefits for both net-
works: the discriminator helps the generator to synthesize
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Fig. 3. Unpaired training and cycle-consistency loss. Discriminators DX

and DY tell if a translated image belongs (or not) to a given domain (left).
The cycle-consistency loss enforces G and F to be inverse-like (right).

images that better fit the target domain (via backpropaga-
tion), while the generator produces unseen samples to train
the discriminator.

Image-to-image translation seeks to obtain two mapping
functions: G : X 7→ Y , and F : Y 7→ X , where X and Y are
distinct image domains. Normally, for a neural network to
learn such functions, it would require paired training data,
consisting of the same sample on both domains. Zhu et al.
show how the use of discriminators can enable the training
on unpaired data [57]. Their technique, called CycleGAN,
makes use of two discriminators: DX , which aims at telling
whether a given image belongs to the X domain, and DY ,
doing the same for the Y domain. Fig. 3 (left) illustrates
how such process works: DY encourages G to translate
from X to Y , and DX enforces F to take an image from
Y and output the corresponding image inside the image-
distribution of domain X . Note that, in this case, G and
F are the generators, but instead of mapping from a latent
space, they map between domains with different image
distributions. To constrain such an ill-posed problem, the
authors use an additional loss function term called cycle-
consistency loss. This term enforces that G and F should be
inverses (conceptually), making both mappings bijective. In
practice, it enforces that given x ∈ X , then F (G(x)) ≈ x.
Likewise, given y ∈ Y , then G(F (y)) ≈ y (Fig. 3 (right)). A
similar idea was independently proposed by Yi et al. [58].

Existing alternatives for performing unpaired training
of image-to-image translation include CoGAN [59], Dual-
GAN [60], and MUNIT [61]. We selected CycleGANs due
to its superior results and flexibility for working on many
tasks. However, the original CycleGAN formulation is not
appropriate for our problem. Thus, we have designed a new
loss formulation suited for adjusting the noise level of a
given image to match the noise level of a target ISO value.

4 ADJUSTING IMAGE NOISE LEVELS

Our method uses a GAN architecture inspired by the work
of Zhu et al. [57]. Its goal is to learn mapping functions
G : X 7→ Y and F : Y 7→ X between the domains X
and Y . X represents the domain of images captured under
a lower ISO setting, and Y represents images captured with
a higher ISO. Thus, the mapping function G should learn
to increase the noise level, while F should learn to reduce
it. During training, two discriminators DX and DY learn
to discriminate images belonging to domains X and Y ,
respectively. Our loss function consists of three terms: an
adversarial loss [53], a modified cycle-consistency loss [57],
and a novel low-frequency-consistency loss.

4.1 Adversarial Loss

Adversarial losses are used to enforce that the output of
generators G and F match the image distributions learned
by the discriminators DY and DX , respectively. Instead of
using the original adversarial loss presented in [53], we use
the Least-Squares adversarial loss [62] due to its increased
stability during training. For G and DY , the adversarial loss
is defined as:

LLSGAN(G,DY , X, Y ) = Ey∼pdata(y)[DY (y)2]

+ Ex∼pdata(x)[(1−DY (G(x)))2],
(1)

where DY outputs 1 when it accepts its input as part
of distribution of domain Y , and 0 otherwise. During
training, G aims to minimize this loss, while DY aims at
maximizing it. This way, DY is trained to accept images
from domain Y and reject the ones generated by G(x).
In turn, G is trained to make its output similar to the
ones in domain Y (i.e., make its output to be accepted by
DY ). A similar adversarial loss is used for F and DX , i.e.,
minFmaxDX

LLSGAN(F,DX , Y,X).

4.2 Cycle-consistency Loss

Zhu et al. argue that both generators should be cycle-
consistent, i.e., for each image x ∈ X , F (G(x)) ≈ x [57].
Likewise, for each image y ∈ Y , G(F (y)) ≈ y. However,
such a constraint is not entirely suited to our problem due to the
stochastic nature of noise. In particular, two noisy photographs
of the same scene have significantly different pixel values,
despite being corrupted by noise realizations coming from
the same ISO-level noise distribution. As such, in combina-
tion with an l1 or l2 norm, the optimization would smooth
images x and y to maximize their similarity, being unable to
increase noise level.

To overcome this limitation, we propose a new cycle-
consistency loss, based on the observation that the noise-to-
signal ratio is higher in the high-frequency Fourier compo-
nents of natural images. Thus, our loss isolates these com-
ponents, and considers only their total energy (in contrast
to exact pixel values). More precisely, it is defined as the l2-
norm ‖ · ‖2 of the channel-wise (R, G, and B) variance (var)
of the high-frequencies of the patches x against F (G(x)),
and likewise for the patches y against G(F (y)). Thus, our
cycle-consistency loss is defined as:

Lcyclic(G,F ) = Ex∼pdata(x)[‖var(H(F (G(x))))− var(H(x))‖2]

+ Ey∼pdata(y)[‖var(H(G(F (y))))− var(H(y))‖2],
(2)

where H(x) = x−Gσ(x) is the high-frequency content of
image patch x, and Gσ( · ) denotes a blur using a Gaussian
kernel with standard deviation σ. Appendix C discusses
how to choose σ values for different ISO values. The low-
frequency component of x, Gσ(x), is a key part of our low-
frequency-consistency loss term (Section 4.3).

During training, we have noticed no major changes
when computing variance over the entire patch or comput-
ing moving variance over small windows across the patch.
Thus, to speed up the training, the variance is computed
once over the entire patch.
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4.3 Low-frequency-consistency Loss
The adversarial loss terms (Eq. 1) make the outputs of gen-
erators to be accepted by the corresponding discriminators,
and the cycle-consistency loss term (Eq. 2) provides addi-
tional constraints, enforcing a given input to maintain high
frequencies after passing through both G and F . Despite
these terms, the problem of image-to-image translation is
still ill-posed. For instance, we have found that only using
adversarial and cycle-consistency loss terms, the resulting
mapping functions tend to not preserve the original colors
and global contrast of the input image. We thus introduce
another novel loss term that addresses this problem. It is
conceptually a dual of the loss from Eq. 2, based on the
observation that given a scene photographed using two different
ISO levels, the low-frequency content of both images should be the
same, regardless of the used ISO levels. This happens because,
as mentioned earlier, low-frequency components are not sig-
nificantly corrupted by the relative noise amplitude. Thus,
for a given image x ∈ X , the low-frequency contents of both
x andG(x) should be similar. The same goes for y and F (y).
Our novel low-frequency-consistency loss is defined as:

Llow-freq(G,F ) = Ex∼pdata(x)[‖Gσ(G(x))−Gσ(x)‖2]

+ Ey∼pdata(y)[‖Gσ(F (y))−Gσ(y)‖2].
(3)

4.4 The Complete Loss Function
The complete loss is then given by:

L(G,F,DX , DY ) = LLSGAN(G,DY , X, Y )

+ LLSGAN(F,DX , Y,X)

+ λ1Lcyclic(G,F )

+ λ2Llow-freq(G,F ),

(4)

where λ1 and λ2 control the importance of each term.
After some experimentation, we empirically found that
λ1 = λ2 = 10 works best. For all results described in
the paper we used this setup. The optimization process is
guided by

G,F = arg min
G,F

max
DX ,DY

L(G,F,DX , DY ). (5)

4.5 Network Architectures
Fig. 4 illustrates the architectures for both generators (top)
and discriminators (bottom). For discriminators DX and
DY , we use the architecture described by Zhu et al. [57],
which consist of a convnet classifier based on Patch-
GANs [63], [64], with patch size of 70 × 70 pixels. For the
generators G and F , however, we have opted for different
architectures.

Different from architectures like U-Net [65], we do not
use any downscaling/upsampling layers (nor any convo-
lutional layer with stride different from 1). Our generator
G adds the input image x to a residual produced by a
modified version of the architecture described by Zhu et
al. [57] obtained by removing its tanh layer. The output of
G for a given input image x is given by

G(x) = x+ Gresidual(x
′), (6)

where Gresidual(x
′) is the residual to be added to the input

image x, and x′ is the concatenation of x with a random
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Fig. 4. Architecture of our GANs: (top) our generators consist of five
residual blocks, two Conv2D and one Batch-Normalization layers. Each
residual block consists of two Conv2D layers. All Conv2D layers (in-
cluding the ones in the residual blocks) are preceded by a reflection
padding and followed by an Instance-Normalization and ReLU layers;
(bottom) the discriminators consist of five Conv2D layers, all followed by
an Instance-Normalization and leaky-ReLU layer.

noise image of same size (i.e., for a 3-channel W ×H image
x, x′ is a 6-channelW×H image). The noise in x′ works like
a seed for the generator, guaranteeing that different versions
of the output will be produced even if the same image is
provided as input multiple times. A similar use of seed for
modeling a distribution of possible outputs appears in [66].

The generator F follows the same idea, with the excep-
tion that x′ = x, as F does not require a stochastic behavior
to reduce noise. Section 5.1 shows that our architecture is
more suited to our problem, being capable of increasing (or
attenuating) high-frequency noise. Appendix A presents im-
plementation details, while Appendix B provides a textual
description of these architectures.

5 EXPERIMENTS AND RESULTS

We present a series of experiments demonstrating the effec-
tiveness of our technique. Our CNN was trained using our
unpaired dataset. The training and test datasets consist of
sRGB photographs captured under different ISO levels (ISO
100, ISO 200, ISO 400, ISO 800, ISO 1600, and ISO 3200). All
images (total of 13,224) were acquired in raw mode using a
Canon EOS Rebel T3i, including photos from many places
and object types. The images were then post-processed
(demoisaicing, white balancing, gamma correction) using
the rawpy library with default parameters for outputting
images in the sRGB color space in PNG format (lossless
compression). This intentionally makes our CNN account
for cross-channel effects that might come from demosaicing
and gamut mapping, as well as for quantization noise.
To speed-up the reads from disk during training, each
5184 × 3456-pixel image was split into 256 × 256 patches.
We removed patches with mean intensity above 0.5 to
avoid over-exposed areas with little noise, which would not
contribute to training. The remaining patches were split into
training and test sets, consisting of 1,883,501 and 235,318
patches, respectively. During training, we randomly crop
a 128 × 128-pixel region from each 256 × 256 patch. Data
augmentation, in the form of horizontal/vertical flips, and
±90◦ rotations, is used for each cropped region.
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Fig. 5. Ablation study, mapping from ISO 100 to ISO 1600. (a) input
image patch (captured w/ ISO 100). (b) Result obtained with the model
trained with Zhu et al.’s [57] architecture and loss formulation. Note
the significant color shift and change in global contrast. (c) output of
model trained with Zhu et al.’s architecture and our loss formulation.
Colors have been better preserved, but contrast has not. (d) output
of model trained with the proposed architecture (Section 4.5) and our
loss formulation; (e) a patch taken from an image captured with ISO
1600 (ground truth). We encourage the reader to zoom in for better
visualization of the noise.

5.1 Ablation Study

We present an ablation study that shows the impact of
each of our decisions (regarding the loss function and
architecture designs). For this study, we have trained our
entire CNN (G,F,DX , and DY ), X being the domain of
photographs captured with ISO 100, and Y the domain of
images captured with ISO 1600. The number of training
patches was 297,211 for ISO 100, and 303,368 for ISO 1600.

Fig. 5 compares three training experiments: Fig. 5(b)
shows results obtained using Zhu et al.’s [57] loss functions
and architecture. Fig. 5(c) shows results obtained using
our modified cycle-consistency loss (Eq. (2)) and our low-
frequency-consistency loss (Eq. (3)), but still using Zhu et
al.’s [57] generator architecture. Fig. 5(d) shows results ob-
tained using our loss formulation (Eq. (5)) and architectures
for generators G and F (see Section 4.5). Fig. 5(e) shows
the corresponding patch taken from an image captured
with ISO 1600 (ground truth). All the models were trained
using the same training set and with the same number
of iterations (4 epochs each). Notice how the additional
constrains imposed by the low-frequency-consistency loss
enforce color and global scene contrast preservation. Our
convolutional architecture, combined with residual strategy
(Eq. (6)) enables the network to better learn how to syn-
thesize (in the case of G) and remove (in the case of F )
high-frequency noise.

5.2 Multi-ISO Mapping

One possible strategy for transforming between arbitrary
pairs of ISO values is to define a chain of mappings between
pairs of adjacent ISO levels. However, mappings between
adjacent ISO values tend to undershoot the noise, behaving
like an identity function. This happens because the domains
of neighbor ISO-levels are very similar, making it very hard
for discriminators to learn how to separate such domains.
This is illustrated in Fig. 6, where the confusion matrix for
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Fig. 7. Our CNN can adjust the noise level of input images to match that
of a target ISO value. In all these examples, our CNN takes an input
patch captured with ISO 100 and maps it to various target ISO values:
200, 400, 800, 1600, and 3200. We encourage the reader to zoom in
these images to inspect the noise levels.

IS
O

16
00

IS
O

10
0

(S
yn

th
et

ic
)

Fig. 8. Photographs mapped from ISO 1600 to ISO 100 using our
technique. Zoom in to see the reduced noise in the synthetic versions.

a classifier that detects the ISO of a given patch got an
average accuracy of only 59.03%. This shows how hard it
is to distinguish between adjacent ISO values. Details about
the classifier’s architecture can be found in Appendix D.

An inspection of the confusion matrix in Fig. 6 shows
that it is virtually impossible to distinguish between ISO
1600 and ISO 3200 photographs, as well as between ISO
100 and ISO 200 pictures. The inspection also reveals that
one can confidently map between ISO 100 and all other ISO
values, except ISO 200. Thus, we designed a multi-ISO map-
ping scheme that takes advantage of this observation. The
mapping between ISO 100 and ISO 200 is done indirectly
through ISO 1600. By transitivity, it allows mappings among
all pairs of ISO values.

Fig. 7 illustrates the use of our technique to adjust the
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noise levels of several photographs taken at ISO 100 to
match different ISO values, from 200 to 3200. Fig. 8 shows
the use of our method to reduce the noise level of five
photographs originally taken with ISO 1600 to ISO 100. We
encourage the reader to zoom in for better visualization of
the increased and reduced noise.

6 EVALUATION

To evaluate our method we use the small version of
SIDD [8], which consists of paired noisy-clean images cap-
tured under different ISO values with five different smart-
phone cameras: LG G4 (G4), Google Pixel (GP), iPhone 7
(IP), Motorola Nexus 6 (N6), and Samsung Galaxy S6 Edge
(S6). Having a paired dataset allows us to compare our re-
sults both quantitatively and qualitatively. It also enables the
computation of the standard deviation of the noise for each
ISO value, which is used to obtain a fair implementation of
AWGN. Moreover, since Noise Flow [25] was trained in such
dataset, the use of SIDD also allows for a fair comparison
with this method.

Section 6.1 describes the five noise models compared to
ours. In Section 6.2 we use a discriminative model trained
to classify noise between natural and synthetic (produced
by previous models). Section 6.3 presents another classi-
fier trained to distinguish among natural noise and the
several noise models described in Section 6.1, including
ours. Finally, Section 6.4 compares the performance of our
technique against the most competitive ones using KL di-
vergence and KS test as objective metrics. Such experiment
measures the similarities between each model’s noise dis-
tributions and the noise distributions of actual photographs
taken at the target ISO levels (ground truth). We also qualita-
tively compare results obtained with these three techniques
for different ISO values and camera models.

6.1 Noise Models

We call an algorithm used to corrupt a clean patch a noise
model. We consider five popular/recent noise models for
comparisons against ours:
AWGN: the most traditional noise model, consisting of
zero-mean Gaussian noise1.. By having paired noisy-clean
patches from the SIDD, we compute the average noise-
variance for each ISO value. Such value is used when
synthesizing noise using AWGN for the corresponding ISO
level;
Poisson: another traditional noise model, synthesizes noise
following a Poissonian distribution6.1;
GaussianPoissonian: a composition of the two previous
noise models (AWGN+Poisson), inspired by [47]. First, we
apply AWGN to the input, then apply Poisson noise to the
intermediate result.
AWGN followed by Bayer sampling and demosaicing:
consisting of the application of AWGN followed by sam-
pling (simulating a Bayer color filter array – CFA) and
demosaicing (using bilinear interpolation). A similar noise
model is used by CBDNet [44];

1. Generated with the random noise function from the python package
skimage

Noise Flow [25]: a deep learning based model for synthe-
sizing noise for different types of cameras and ISO values.
As the provided models were trained in raw space, we
synthesize (and add) noise in raw before converting the
images to sRGB.

We refer to our models trained on the small SIDD dataset
as GANSIDD. Although SIDD provides noisy-clean pairs, the
training of our generative models was unsupervised (i.e.,
did not use such paired information). The small version
of the SIDD dataset contains 160 pictures, and only their
most representative ISO values were used for training our
models: ISO 400 (17 pictures), ISO 800 (36 pictures), ISO
1600 (22 pictures), and ISO 3200 (13 pictures). This resulted
in 88 images and a total of 18,951 256×256 training patches
distributed over these four ISO levels and five camera mod-
els. We trained one GANSIDD for each combination of ISO
level and camera model. Training one model per ISO value
regardless of camera model results in mode collapsing [53],
where the generator learns to mimic only one camera model.
Each model was trained for 40 epochs using 128× 128 ran-
dom crops from the training patches (to expedite training).

Except for Noise Flow, the remaining algorithms operate
directly in the sRGB space. For each scene, SIDD provides
a so called clean image, obtained after processing 150 pic-
tures taken from the same scene [8]. For the comparisons
described in the following sections, all noise models take
as input one 256 × 256 clean patch at a time. Their outputs
are used as input to discriminative models, and the images
and noise distributions are compared to patches from actual
photographs (ground truth) taken at the target ISO level.

6.2 Classifying Natural and Artificial Noise
An evaluation network was trained for classifying a given
input into one of the two classes: (i) corrupted with natural
noise, or (ii) corrupted by traditional noise models (i.e.,
AWGN, Poissonian, GaussianPoissonian, and AWGN fol-
lowed by Bayer sampling and demosaicing). During train-
ing, each patch had a 20% probability of containing natural
noise (i.e., taken directly from an actual noisy photography
in the SIDD dataset). There was also a 20% probability that
a training patch is obtained by corrupting a clean patch
with each one of the four noise models (adding up to the
remaining 80%). Details of the architecture of this binary-
classification network can be found in Appendix D. The
obtained classifier achieved an accuracy above 99.75% on
the test set on all ISO levels. This simple experiment shows
how easily separable the sets of images corrupted by natural
and by artificially-generated noise are. It also shows how
current synthetic noise models fail to mimic natural noise found
in digital photographs.

6.3 Discriminating among Noise Models
We also trained classifiers for discriminating images con-
taining natural noise as well as ones corrupted by the six
noise models described in Section 6.1, which include ours.
We trained a single classifier for each ISO level (400, 800,
1600, and 3200), regardless of the used cameras models. Al-
though the trained classifiers are capable of discriminating
between natural and our GAN-generated noise, we show
that the noise produced by our generative models is much
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Fig. 9. Classification of images corrupted by several noise models, including our GANSIDD trained on the small SIDD dataset. We trained one
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TABLE 1
KL divergences and KS values for different noise models, ISO values, and lighting conditions ([L]ow and [N]ormal light brightness levels). Best

(lower) values are highlighted in bold. These values were measured over the whole population of image patches (see the text for details). Notice
how our method achieves better values for these metrics across all ISO values.

ISO 400 ISO 800 ISO 1600 ISO 3200
L N L N L N L N

KL divergence

AWGN 0.0910 0.1063 0.0938 0.1108 0.1780 0.1478 0.0765 0.0796
AWGN+Poisson (linear) 0.1358 0.0781 0.2053 0.1010 0.0732 0.1786 0.0784 0.0383
NoiseFlow 0.1052 0.1557 0.0593 0.1140 0.0517 0.0634 0.0801 0.0520
GANSIDD 0.0091 0.0323 0.0104 0.0249 0.0228 0.0129 0.0339 0.0188

KS value

AWGN 0.0693 0.0787 0.0842 0.0909 0.1096 0.1237 0.1100 0.0896
AWGN+Poisson (linear) 0.1000 0.0668 0.1520 0.0726 0.0937 0.1277 0.0784 0.0628
NoiseFlow 0.1138 0.1422 0.0900 0.1057 0.0929 0.0821 0.1270 0.0925
GANSIDD 0.0333 0.0564 0.0404 0.0550 0.0600 0.0643 0.0761 0.0677

closer to natural than the ones created by previous noise
models. Fig. 9 shows the results of these classifiers. The
confusion matrices on the top were created with 2,000 test
patches for each ISO level. Notice that the confusion be-
tween natural and our GAN generated noise is higher than
with the previous noise generators. The t-SNE visualizations
at the bottom of Fig. 9 show the output of the last layer of
each classifier. t-SNE is a visualization technique that uses
a non-linear transformation to project the data onto a 2D
plane, trying to keep the pairwise distance between samples
[67]. Note that the projections of other noise models are
further away than ours (brown) from natural noise (pink).
The projections of the noise generated by our GANSIDD
overlap with natural for most ISO values. The labels of
each sample (AWGN, Poisson, natural, etc.) were not used
for learning the t-SNE projections, but only for coloring the
visualizations after t-SNE has been applied.

The use of classifiers is a known strategy for measuring
the quality of generative methods [68]. According to Lopez-
Paz and Oquab, the lower the classifier’s accuracy when
discriminating between natural and synthesized samples,
the higher the quality of the generative model. It is im-
portant to mention that when evaluating trained generative
models [68], all experiments got near-perfect results (real
and synthetic samples being easily distinguishable). In a

similar experiment presented in this section (Fig. 9), the
classifier failed to distinguish our results from natural noise
in several occasions.

6.4 Quantitative Metrics

For quantitative evaluation, we compared patches contain-
ing natural noise with synthesized ones produced using
AWGN, AWGN+Poisson, Noise Flow, and our GAN mod-
els. We use the KL divergence and KS test as objective
metrics for assessing the similarity of the noise distributions
generated by each technique with the noise distributions
obtained from natural noise. Lower values for KL and KS
represent better results (more similar to real noise).

Fig. 10 shows additional quantitative and qualita-
tive comparisons (besides the ones in Fig. 2) of patches
from different ISO values and lighting conditions (L for
low and N for normal light-brightness levels) from the
small SIDD datataset. The variances used for AWGN and
AWGN+Poisson-linear are mean variances measured in
sRGB (post-gamma) and in linear space (obtained by ap-
plying inverse gamma to sRGB), respectively. For each ISO
level, the variances were computed from all noisy-clean
image pairs for the given ISO value. Noise Flow were
applied in raw space, with metadata (camera and ISO value)
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Fig. 10. Additional comparisons of synthesized noise obtained by cor-
rupting clean patches for different ISO values and camera models.
Our results achieved the best (smaller) KL divergence and KS values.
Ground truth is an actual photograph taken at the target ISO level. The
clean images are provided as part of the SIDD dataset.

taken from the patch2, using a trained model provided by
the authors. AWGN+Poisson-linear was applied in linear
space. Both AWGN and our GANSIDD models are applied
directly in the sRGB space. Both metrics (KL divergence and
KS value) are computed in the sRGB space.

Note in Fig. 10 how our model achieves smaller values
of KL divergence, despite of not using paired data at all.
Table 1 compares these metrics, for the most competitive
methods, for the whole population of patches from SIDD.
The metrics were obtained by computing the Red, Green
and Blue histograms of all patches as a group, resulting in
three numbers per population (KLR, KLG, KLB), which
are averaged together. The same procedure is performed
for KS values. For more details please refer to Appendix E.
Appendix F provides a similar Table comparing additional
methods. As seen in Table 1, our approach obtains the
best metrics across practically all scenarios, attesting to its
effectiveness in synthesizing noise that is statistically similar
to natural noise. Appendix G provides more comparison
cases for visual inspection.

2. Our statistical metrics are computed in sRGB space, and we
noticed that the raw-to-sRGB postprocessing implemented by Noise
Flow differs from the one implemented by SIDD. To be fair in our
comparisons, the metrics for Noise Flow were computed against the
clean sRGB images provided in the Noise Flow package.
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Fig. 11. Comparison of synthesized noisy images and corresponding
noise (residual) produced by the various methods. For better visualiza-
tion, contrast of the residual images has been enhanced by factor of 3×.
Our results better mimic the noise found in digital photographs.

Fig. 11 compares the synthesized noise (residual), i.e.,
the difference between the noisy and clean image versions,
generated by the noise models in Fig. 10. Notice how our
method better mimics camera noise, specially regarding
the size of noise grain and color distribution. Appendix H
provides additional examples of residual images.

7 APPLICATIONS

To demonstrate a potential application of our noise model,
we trained several versions of the DnCNN method for
blind denoising [9]. We have used the authors’ implemen-
tation, using the DnCNN-S architecture, which consists of
17 Conv2D layers with 64 filters each. Each version of the
DnCNN denoiser is trained on an extensive noisy-clean
paired dataset created with a different realization of our
GAN. More precisely, we select a set of clean (noise-free)
images from the dataset of Gharbi et al. [69], and compute
the corresponding noisy images using our GAND noise
generator (for several ISO values). The subscript D indicates
on which (unpaired) dataset the GAND noise model was
trained: D ∈ {our T3i, SIDD}. Although we describe a
denoising application, in principle, our method could be
used to generate input to any trainable computer-vision task
that seeks robustness to noisy scenarios.

To compare our noise generator against existing alter-
natives, we also trained several DnCNN denoisers using
paired datasets created by the AWGN and Poissonian-
Gaussian models (both applied in linear and post-gamma
spaces - see Table 2), CBDNet [44] and Noise Flow [25] (for
these last two, we used implementations provided by their
authors). For all experiments, we trained the denoisers past
convergence: taking the checkpoint with highest PSNR on
the validation set. We used the same data-augmentation in
the training of all models (see Appendix I for details).

Table 2 summarizes the results of the DnCNN denoisers
trained with our GAN noise models versus the alternatives.
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TABLE 2
PSNR results of evaluating a denoiser (DnCNN) trained using noise generated by existing techniques, and by using the generators trained with our

Canon dataset, and with SIDD dataset. The version of DnCNN trained using images corrupted by both GANs (trained with Canon and SIDD
datasets) achieved higher PSNR (in bold) in all natural-image benchmarks.

Renoir Darmstadt SIDD
id Noise Model T3i Mi3 S90 Low lighting Normal lighting

1 CBDNet [44] 27.35 25.08 26.62 32.58 24.48 28.99
2 AWGN 29.12 25.07 28.91 30.63 27.07 29.31
3 AWGN-linear 29.64 25.48 29.48 32.13 29.17 31.20
4 AWGN+Poisson 29.61 25.18 29.31 31.15 27.30 29.71
5 AWGN+Poisson-linear 30.02 25.94 29.70 32.11 29.93 31.67
6 Noise Flow [25] 30.62 26.15 29.93 32.84 29.53 31.68
7 GANour T3i 33.51 28.09 31.60 32.24 30.33 31.48
8 GANSIDD 32.16 27.38 31.04 32.79 31.85 33.02
9 GANour T3i + GANSIDD 33.49 28.14 31.69 35.32 33.27 34.67

We evaluate each denoiser using the Renoir [6], Darm-
stadt [7], and SIDD [8] denoising benchmarks. In these, we
discriminate each camera model in the Renoir dataset, as
well as between scenes captured under low (L) and normal
(N) light brightness levels in the SIDD dataset. As can be
seen by the higher PSNR values in Table 2, using our GAN
noise models lead to improved performance of the DnCNN
denoiser across all benchmarks.

Compared to previous noise generators (rows 1 to 6
in Table 2), the denoiser trained only with noisy images
generated by GANour T3i (row 7 in Table 2) got a significant
improvement in PSNR performance, especially in the Renoir
dataset. Similarly, when trained only with GANSIDD (row
8 in Table 2), the denoiser also performed significantly
better than previous approaches, in particular on the SIDD
dataset. Intriguingly, a more generic denoiser trained using
randomly selected patches generated by GANour T3i and
GANSIDD got the overall best results (row 9 in Table 2).
We conjecture that the combined use of the two models
might help to fight overfitting, thus explaining the improved
performance. Indeed, while the denoisers separately trained
with GANour T3i and GANSIDD both converged between
epochs 3 and 4, the denoiser trained with both noise models
(GANour T3i + GANSIDD) converged after epoch 5.

8 DISCUSSION

The classifiers for identifying the ISO level of a given
patch (Section 5.2), for distinguishing natural from artifi-
cial noise (Section 6.2), and for noise-model classification
(Section 6.3) all share similar architectures. The architectures
of the GAN generators (Section 4.5) and of these classifiers
were obtained after experimenting with different designs
(e.g., residual network [70], U-Net [65]) and different deep-
learning layers (e.g., batch-normalization [71], half-strided
convolutions, and instance normalization [72]). We have
also tried different metrics for the cycle-consistency loss
(Section 4.2), such as l1 and l2 norm, and SSIM.

Using a residual design (Eq. (6)) for our generators
greatly improved the convergence of the training and the
quality of the results. In this same residual design, we
include a batch-normalization as the last layer of the gen-
erator, initializing Γ (the scaling parameter) as 0.1, making
Eq. (6) to be close (at initialization) to an identity function.
This actually speeds up the training convergence, while re-
ducing generated artifacts. As mentioned in Section 4.1, we
replaced the traditional adversarial loss by the least-squares

adversarial loss, as this has been reported to increase train-
ing stability [62]. While the tanh activation function is often
used as the last layer of generators, for our application
it tends to saturate highlights and darken low-lit regions.
Removing tanh improved our results.

Adding noise to raw image values more closely simu-
lates most noise sources, besides being simpler to implement
compared to simulating these processes in demosaiced,
white-balanced, quantized, and compressed images. How-
ever, doing so would preclude our method from being used
with images post-processed by such transformations (such
as JPEG, PNG, etc.), which are used by most applications.
Therefore, we perform all training in the sRGB color space.
This was a design decision where we favored wider ap-
plicability over slightly better precision. Nonetheless, by
retraining our models for input/output raw pixel values,
our method can be used with RAW images.

A key factor for AWGN-based noise-models is the choice
of the variance. In our KL/KS comparison, as well as in the
denoiser experiment, the variance for AWGN was computed
for each ISO level using the paired noisy-clean images
from SIDD3. When such paired dataset is unavailable, the
variance must be estimated or guessed, resulting in a poorer
representation of the natural noise. Our method, on the
other hand, does not rely on paired datasets, thus, the
gap between results obtained with our and AWGN- based
methods should increase in practical applications.

Training GANs is hard not only due to problems dur-
ing training (e.g., mode collapsing, non-convergence, di-
minished gradients, and sensibility to hyperparameters),
but specifically to potential artifacts introduced by image-
generative models, like ringings and blurring. The fact
that our GAN architecture is capable of generating high-
frequency noise illustrates its potential. Nonetheless, color
shifts and halos may happen in some situations. The cause
of these artifacts are not quite clear, and its understanding
and correction is a subject for future investigation. Despite
such artifacts, our model provides a better alternative to
existing noise generators, as shown in Table 2.

Noise encountered in photographs of different camera
models might exhibit different noise statistics [8]. We show
how our GAN model can be trained for generating noise
mimicking multiple camera models (e.g., Canon T3i and
several smartphone cameras from SIDD). We show that the
performance of a denoiser trained using such networks is

3. We computed the variance for the post-gamma and linear spaces.
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greatly improved on several benchmarks, which demon-
strates the potential and generalization of our method. For
instance, the denoiser trained with GANour T3i + GANSIDD
got improved PSNR on cameras Mi3 and S90 (row 9 in
Table 2), even when our generative models were not trained
with images from such cameras.

We have demonstrated that our generative models can
be trained in an unsupervised way using small, unpaired
datasets. Thus, it can be easily applied to other camera
models. Its main limitation is the mode collapsing observed
when training a single generator for several camera models.
While we have dealt with this issue by training one gen-
erator for each camera model, ideally this problem should
be addressed directly in the GAN architecture. This is the
subject of future investigation.

9 CONCLUSION

We presented a practical data-driven technique for adjusting
the noise level of input photographs to match target ISO
levels. Our solution learns the mappings among different
ISO levels from unpaired data using GANs, for which we
defined a new loss formulation and network architectures
tailored to the problem. An ablation study justifies our
decisions, confirming the superior results achieved when
using our method. By not requiring a paired noisy-clean
dataset, our technique can be trained for any camera model
by just collecting photographs for the various ISO levels.

We demonstrate the effectiveness of our approach both
quantitatively and qualitatively, by demonstrating its su-
perior performance over previous methods. As a practical
application, we have shown that images generated by our
technique greatly improve the performance of a state-of-the-
art trainable denoiser. Our source code and trained models
are available at our project repository4.

Several applications can benefit from our technique. This
includes not only trainable denoising methods, but also de-
mosaicing [15], [69] and image-reconstruction [14], forgery
detection [16], as well as computer-vision tasks seeking
noise robustness [11], [12], [13].
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