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Figure 1: Capture and reconstruction of color images on single-sensor cameras. A color filter array (CFA) selectively allows scene pho-
tons with certain wavelengths to reach portions of a monochromatic sensor. A color image is then reconstructed from the filtered samples
(multispectral image mosaic) using a demosaicing algorithm. We model this process as an autoencoder: the CFA projection encodes color
information onto the monochromatic sensor, which is later decoded by the color-reconstruction method. The joint design of CFA patterns
and demosaicing produces high-quality color reconstruction, outperforming existing techniques.

Abstract
We present a convolutional neural network architecture for performing joint design of color filter array (CFA) patterns and
demosaicing. Our generic model allows the training of CFAs of arbitrary sizes, optimizing each color filter over the entire
RGB color space. The patterns and algorithms produced by our method provide high-quality color reconstructions. We
demonstrate the effectiveness of our approach by showing that its results achieve higher PSNR than the ones obtained with
state-of-the-art techniques on all standard demosaicing datasets, both for noise-free and noisy scenarios. Our method can
also be used to obtain demosaicing strategies for pre-defined CFAs, such as the Bayer pattern, for which our results also
surpass even the demosaicing algorithms specifically designed for such a pattern.

CCS Concepts
•Computing methodologies → Computational photography; Neural networks;

1. Introduction

Color filter arrays (CFAs) are a key component of digital imag-
ing devices, allowing the capture of color pictures using a single
monochromatic sensor. Superimposed on the sensor, a CFA se-
lectively allows photons with certain wavelengths to reach the
sensor, creating a multispectral mosaic (Fig. 1 (center)) defined
by the properties of the filters in the CFA pattern. These filtered
samples are then interpolated through a process known as demo-
saicing that reconstructs the resulting color image (Fig. 1 (right)).
The Bayer pattern [Bay76] is the most popular CFA pattern for
digital cameras and many demosaicing algorithms have been

proposed to improve the quality of the reconstructed images
sampled with it [MBP∗09,Get11b,HvLP12,Wan14]. Nonetheless,
several techniques have focused on designing new CFA patterns,
either by looking for patterns whose representation in the fre-
quency domain have little overlap between luma and chroma
information [HLLD11, Con11, BLLY16] (designed specifically for
use with frequency-selection demosaicing algorithms [ASH05,
Dub05]), or by designing CFAs for sparse-representation-based
demosaicings [LBLY17, MBP∗09]. Essentially, previous solutions
have been restricted to either design demosaicing algorithms for
a given CFA pattern (e.g., the Bayer pattern), or to design CFA
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Bayer Our 4x4 noise-free Our 4x4 noise

Figure 2: CFA patterns. From left to right: Bayer pattern, our 4×4
CFA for noise-free data, and our 4×4 CFA for noisy data. The num-
bers inside each cell are (from top to bottom) the R, G, and B coef-
ficients defining the color filter.

patterns that work with a specific demosaicing algorithm (e.g.,
[ASH05, Dub05, MBP∗09]). Since sampling and reconstruction
are tightly-coupled processes, by predefining the CFA pattern or
the reconstruction algorithm, one severely constrains the search
space and, therefore, the ability to obtain an optimal solution.

We simultaneously address the problem of CFA pattern de-
sign and demosaicing. For this, we use an end-to-end autoen-
coder that mimics the process of image acquisition (Fig. 1). An
autoencoder is a learning model that tries to reconstruct the
original information after projecting it into a lower-dimensional
space [KW13]. Our autoencoder jointly obtains a CFA pattern
and a demosaicing algorithm. The encoding step projects the
light filtered by the CFA onto a monochromatic sensor, gener-
ating a multispectral image mosaic. The decoding step recovers
a color image from the mosaic (Fig. 1). By training encoder and
decoder simultaneously, for any given CFA dimensions our ap-
proach automatically finds the CFA pattern and corresponding
demosaicing algorithm that minimizes color-reconstruction er-
ror. Our technique produces high-quality color reconstructions,
outperforming the state-of-the-art techniques in all standard de-
mosaicing datasets both for noise-free and noisy data. Fig. 2
shows two 4×4 color filters obtained with our method. Such pat-
terns are tiled to produce CFAs with the desired number of pixels.

The contributions of our work include:

• A method for the joint design of CFA pattern and demosaic-
ing that minimizes color-reconstruction errors (Section 3). Our
model is the first to optimize CFA colors over the entire RGB
color space, while jointly optimizing demosaicing. The re-
sults produced by our system outperform existing solutions in
terms of PSNR for both noise-free and noisy data (Section 4);

• An autoencoder architecture that models the color-image cap-
ture process on single monochromatic sensors. Our architec-
ture achieves fast training convergence on image patches, and
works with CFAs of different sizes, including existing ones
(Section 3.1);

2. Related work

2.1. CFA Design

Following the work of Bayer [Bay76], several color filter arrays
have been proposed over the years. Lukac and Plataniotis [LP05]
analysed the performance of ten RGB CFAs. More recently, re-

searchers have proposed a variety of new CFA design strate-
gies. Hirakawa and Wolfe [HW08] introduced the idea of design-
ing CFAs directly in the Fourier domain by optimizing the car-
rier waves. Lu and Vetterli [LV09] presented a CFA pattern that
minimizes the reconstruction error of a linear-minimum-mean-
square-error demosaicing method. Condat presented three dif-
ferent designs: RGB CFAs arranged in a non-periodic pat-
tern [Con09], randomly generated patterns with specific blue-
noise characteristics [Con10], and a 2×3 CFA pattern which has
enhanced sensitivity properties and robustness to noise [Con11].
Hao et al. [HLLD11] introduced CFAs based on the frequency
structure, which are manually initialized according to some
guidelines, and then optimized using a geometric method. Bai
et al. [BLLY16] proposed a method for CFA design in the fre-
quency domain. Given the CFA pattern size, their method sug-
gests frequency-structure candidates and then optimizes the
parameters by maximizing numeric stability of color transfor-
mations. Chakrabarti et al. [CFZ14] proposed a predominantly
panchromatic CFA that samples color at sparse sets of locations,
which are then propagated throughout the image guided by the
luminance channel. In a subsequent work, Chakrabarti [Cha16]
used a convolutional neural network (CNN) architecture to de-
sign a CFA from a set of predefined colors, while training the
demosaicing method concurrently. Li et al. [LBLY17] proposed
a CFA design optimized for sparse-representation-based demo-
saicing [MBP∗09] and showed how to minimize mutual coher-
ence of CFAs with constraints for physical realizability.

The work closest related to ours is the one proposed by
Chakrabarti [Cha16], which is the only previous technique to
jointly optimize CFA design and demosaicing. However, our
method differs from Chakrabarti’s in a crucial aspect: while
Chakrabarti treats CFA design as a decision problem, we model
it as a regression problem, thus optimizing CFA colors over the
entire RGB color space. As such, our approach explores a much
larger parameter space, resulting in better color-reconstructed
images, with PSNR gains ranging from 5 up to 30 dB, for images
in the standard demosaicing datasets (Section 4).

2.2. Demosaicing

Demosaicing is a well-studied problem, with many surveys on
existing methods [LGZ08, MC11, KB15]. Demosaicing algorithms
have been proposed for the frequency domain [ASH05, Dub05,
LCTZ07], and based on hard-coded heuristics for interpola-
tion [JAJ∗14, Li05, ZW05], self-similarities [ZWBL11a, BCMS09],
optimization schemes [CM12, HST∗14, KHKP16], and compres-
sive sensing [MBP∗09,MAKR13,DVM16]. Next, we discuss demo-
saicing strategies based on neural networks.

Kappa and Hel-Or [KHO00] and Go et al. [GSL00] were the first
to use neural networks for demosaicing. Long and Huang [LH06]
later proposed an adaptive scheme to improve Go et al.’s method.
Heinze et al. [HvLP12] proposed multi-frame demosaicing us-
ing a neural network for estimating the pixel color based on its
surroundings. Wang [Wan14] used 4×4 patches to train a multi-
layer neural network while minimizing a suitable objective func-
tion. Gharbi et al. constructed a dataset with hard cases, which
were used to train a CNN for joint demosaicing and denois-
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Figure 3: Example of an encoder mimicking the Bayer pattern. Each color filter is represented by weights ~wi = [wi r , wi g , wi b , wi t ] and a
mask (maski ), generating a submosaic. For the Bayer pattern, the bias term wi t = 0 for all three color filters wi . The Iinput⊗~wi , submosaici ,
and Imosaic images are colored just for illustration, as they are single-channel images.

ing [GCPD16]. All these methods were specifically designed to
reconstruct Bayer filtered images.

2.3. Convolutional Neural Networks and Autoencoders

Convolutional neural networks [LBBH98] have been extensively
used for image classification [KSH12], and most recently have
been applied to a large variety of visual tasks. An autoencoder
is a variation of a neural network that tries to learn a represen-
tation of its input in a lower-dimensional space and then repro-
duce the original information from such a sparse representation.
Introduced in the CNN literature as a data-driven compression
method [KW13], the autoencoder concept has already been used
for image denoising [VLL∗10], data visualization [vdMH08], su-
perresolution [ZYW∗15], and to learn priors used for image re-
construction [CJN∗17].

Residual architectures (with skip connections) have been used
in several image-processing tasks such as denoising [ZZC∗17],
superresolution [TAG∗17], and others [JMFU17]. Our architec-
ture similarly makes use of skip connections, but instead of
merging branches by summing feature maps (as in the original
ResNet [HZRS16]), we do so by concatenating the skipped and
original feature maps. Such a choice has already been used in re-
cent works [SLJ∗15, SVI∗15].

3. Joint Design of CFAs and Demosaicing

Our joint design of CFA pattern and demosaicing is expressed as
the training of an autoencoder. Given a set of training images, the
encoding procedure consists of projecting the corresponding in-
put RGB information on the (trainable) color filter array pattern
(Section 3.1). Such a projection generates a single-channel multi-
spectral image mosaic (Fig. 1 (center)), which serves as input for
the decoding (color reconstruction) step.

The training process minimizes a loss function defined as the
mean squared error (MSE) between the provided ground truth
and the reconstructed color images. The trainable parameters
are the colors of the CFA pattern (encoder) and the CNN weights
for demosaicing (decoder). Fig. 1 illustrates the concept. When
designing the encoder, we are restricted by physical limitations

imposed by the construction of actual CFAs, which precludes the
use of non-linear activation functions and stacked layers. The de-
coder, however, may use as many layers as desired, as it is com-
puted after the sampling process. The architecture of our net-
work is detailed in Section 3.1.

Using only convolutional, ReLU and batch-normalization lay-
ers [IS15], our CNN architecture supports images of different
sizes. By avoiding the use of fully-connected layers, the network
can be trained using small image patches (with 128×128 pixels)
and still reconstruct images of variable resolution (without the
need of breaking the image into patches). This provides our CNN
great flexibility and significantly reduces training time.

3.1. Our Autoencoder Architecture

Encoding: Our architecture optimizes colors over the en-
tire RGB color-space. Each component (i.e., color filter) of
the CFA pattern is represented by a four-dimensional vector
~w = [wr , wg , wb , wt ]. The weights [wr , wg , wb ] ∈ R3

≥0 are RGB
coefficients that represent the actual color filter (Fig. 2), and
wt ∈R is a bias term. Appendix A shows the full vectors ~wi as-
sociated with our CFAs. Given a pixel from an input image with
RGB coefficients ~p = [pr , pg , pb ] ∈R3

≥0, we model the encoding
of ~p by the color filter ~w using an affine functional ⊗ defined as:

~p ⊗ ~w := pr wr +pg wg +pb wb +wt . (1)

Eq. (1) is modeled as a convolution of the input image with a
1× 1× 3 kernel plus a bias term. Note that since all coefficients
of ~w are trainable, we must enforce non-negative weights (i.e.,
wr , wg , wb ≥ 0) to guarantee that the color filter is physically
realizable. For this, after each update, all negative weights are
clamped to zero. We do not constrain the value of the bias param-
eter wt since it is added after image capture. Similarly, we do not
constrain the maximum value of the weights wr , wg , and wb to
allow for a wider range of admissible parameters during training
(any constant rescaling may be performed after image capture
as well). While such restrictions could be included on the archi-
tecture, having them could hamper the training convergence (by
reducing the optimizer’s search-space). In practice, however, the
weights produced by our method seem to always fall in the [0,1]
interval (see Fig. 2).
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Each color filter wi has an associated binary mask (maski )
that specifies the pixels projected through it. Thus, simulating
a CFA containing N distinct color filters requires the use of N
distinct functionals and N disjoint binary masks. The projected-
submosaic generated by the i -th color filter is then defined as

submosaici =
(
Iinput ⊗ ~wi

)×maski , (2)

where Iinput is an RGB input image, ~wi = [wi r , wi g , wi b , wi t ],
maski is the binary mask corresponding to the i -th CFA color,
and both the functional ⊗ and product × are evaluated pixelwise.
Thus, the multispectral mosaic generated by a CFA with N color
filters is define as

Imosaic =
N∑

i=1
submosaici . (3)

Note that one can define CFAs of arbitrary sizes while enforc-
ing how the pattern should repeat by using the disjoint masks.
During training, the weights ~wi are optimized to minimize color-
reconstruction error, while all masks remain fixed. Appendix B
describes the construction of the binary masks used in our ex-
periments. Fig. 3 shows an example of an encoder mimicking the
Bayer pattern, for which the bias wi t = 0 for all i . Note that the
mask corresponding to the green component is twice as dense as
the others.

Decoding: The decoding step receives as input the multispec-
tral image mosaic Imosaic produced by the encoder (Eq. (3)) and
tries to reconstruct the original RGB image Iinput. The decoder
architecture consists of stacked convolutional layers, each one
followed by a batch-normalization layer [IS15] and by the ReLU
activation function [NH10]. All convolutional layers use 3×3 ker-
nels, using padding to ensure the same x y-dimensions for all re-
ceptive fields. We trained multiple architectures using different
numbers of skip connections. The results of these experiments
suggest that the use of a single skip connection (from the begin-
ning of the decoder to its end) results in better performance, both
in terms of faster convergence and better reconstruction. All re-
sults presented in Section 4 and in the supplemental materials
were obtained with such an architecture, which is shown in Fig. 4.

In addition to the monochromatic image mosaic, we provide
the following additional inputs to the decoder: the submosaics
of each color filter wi , and linearly-interpolated versions of each
submosaic. Although the submosaics themselves do not add new
information to the decoding sub-network, they save the effort
of learning how to separate individual channels, thus reducing
training time. The linearly-interpolated versions of the submo-
saic, in turn, result in better results and faster convergence, since
such an initial guess for the color-reconstructed image is much
closer to the target image. In our CNN architecture, linear inter-
polation is achieved by convolving the submosaics with a tent
kernel. Since this kernel is separable, the 2D interpolation kernel
kn,m is defined as the outer product kn kT

m , where

kc = [
1/c

2/c ... (c −1)/c 1 (c −1)/c ... 2/c
1/c

]T
.

The vector kc ∈R2c−1 defines a 1D tent kernel that interpolates
a mosaic generated by a 1D CFA pattern containing c colors. For
example, k2 = [1/2 1 1/2] and, for a 4×4 CFA pattern with 16 distinct

color filters, the required tent kernel is

k4,4 = 1

16



1 2 3 4 3 2 1
2 4 6 8 6 4 2
3 6 9 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 9 6 3
2 4 6 8 6 4 2
1 2 3 4 3 2 1


.

This interpolation is performed by a standard convolutional layer
with fixed kernel weights. Although these weights could also be
learned, we have found that fixing them (i.e., not updating them
during training) produces better results.

The complete architecture of our autoencoder is depicted in
Fig. 4, while Section 4 provides implementation details. Besides
the skip connection from the beginning of the decoder to its
end (for improving color reconstruction and training conver-
gence) indicated by the dotted orange arrow, we also use skip
connections from each submosaic and corresponding linearly-
interpolated versions to the decoder’s input. Such connections
are indicated by the dotted green arrows and proved to speed up
the training, providing a path for gradient backpropagation.

Training: Given the number of color filters for the CFA and
the topology of the decoding network (number of convolutional
layers with their inner parameters – Fig. 4), the autoencoder
is trained by iteratively feeding patches to the network. Such
patches are used to update the the colors of the CFA and weights
of the demosaicing method, trying to minimize the MSE between
the input color patches and their reconstructions.

4. Demosaicing Results and Evaluation

Our particular instantiation of the autoencoder architecture de-
scribed in Section 3.1 and illustrated in Fig. 4 includes a de-
coder consisting of a stack of 12 convolutional layers. The num-
ber of (3 × 3) kernels used in each of these 12 layers are [64,
64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128], respectively.
This setup presents a good trade-off between network expres-
siveness and training time. We show that the quality of our re-
constructions surpasses the ones generated by existing meth-
ods [Cha16, MBP∗09, GCPD16].

We implemented our network using Keras [Cho15], running on
top of Theano [Tea16], using MSE as the loss function, and the
Adam optimizer [KB14] (l r =α= 0.001, β1 = 0.9, β2 = 0.999, and
ε = 10−8), with batch size of 32. Training was performed using
two datasets provided by Gharbi et al. [GCPD16]: vdp and moiré.
We used the same images as Gharbi et al. for training, consisting
of 2,590,186 128× 128-pixel patches. In addition, we used hori-
zontal and vertical flips, as well as random 90◦ rotations, for data
augmentation. Our model for reconstructing noise-free images
(as well as our demosaicing method for the Bayer pattern) was
trained for 3 epochs, which corresponds to approximately 5 days
of training time on a GeForce GTX TITAN X GPU. Our model for
reconstructing noisy data was trained for 6 epochs.
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Figure 4: Our autoencoder architecture. The encoding step projects the colored image patches through the trainable CFA, generating a
multispectral image mosaic. Skip connections (green arrows) contribute submosaics consisting of the separate color channels as well as
per-channel interpolated images, which are stacked with the multispectral image mosaic forming a deeper representation (total of 2N +1
channels for N color filters).The decoding component is based on residual blocks. This autoencoder can produce CFA patterns of different
sizes and works with networks of distinct depths. The beginning-to-end decoder skip connection (orange arrow) improves color reconstruc-
tion and training convergence. Parameters details are given in Section 3.1.

Demosaic (Bayer CFA) Kodak McMaster vdp moiré
Bilinear 29.51 32.32 24.97 27.39
[ZWBL11a] 35.66 29.87 24.85 28.04
[Get11a]] 35.98 35.87 29.88 31.70
[BCMS09] 36.62 35.24 29.34 31.30
[LKV10] 37.17 32.22 27.67 28.70
[CM12] 38.51 33.29 29.03 30.96
[JAJ∗14] 38.71 36.84 30.27 31.75
[HST∗14] 38.83 38.30 30.93 34.61
[KMTO16] 38.84 36.86 30.52 31.90
[JD13] 40.03 33.78 29.34 31.33
[Get11b] 40.13 34.17 30.06 32.25
[MBP∗09] 41.23 36.13 30.94 33.16
[GCPD16] 41.79 39.14 33.96 36.64

Our 2x2 Bayer 41.86 39.51 34.28 36.33

Demosaic (non-Bayer CFA) Kodak McMaster vdp moiré
[Cha16] 31.52 28.05 23.97 23.97
[CFZ14] 33.51 30.94 25.91 28.77
[Con11] 38.10 32.90 28.65 30.45
[HLLD11] 39.42† — — —
[BLLY16] 40.24† — — —
[HW08] 40.36† — — —
[LBLY17] 41.59† — — —

Our 4x4 noise-free 43.13 40.18 35.17 37.70

Table 1: Comparison of our 4× 4 noise-free CFA and demosaic-
ing technique against existing methods. The numbers show the
average PSNR values of reconstructions for four datasets. All re-
sults were generated using code provided by the authors, except the
ones marked with †, whose numbers were taken from the corre-
sponding publications. Our 4×4 noise-free CFA and demosaicing
outperform all other techniques in all four datasets (best results in
bold). Our demosaicing network for the Bayer pattern also outper-
forms all previous techniques for the Kodak, McMaster, and vdp
datasets, and got very close to Gharbi et al.’s in the moiré dataset.

4.1. Comparisons to Other Approaches

Table 1 compares the PSNR of the results obtained with our
4×4 noise-free CFA (Fig. 2) with the ones produced by the most
successful demosaicing techniques [MBP∗09, Get11b, BLLY16,
HLLD11,Con11,Wan14,Cha16,GCPD16]. For all comparisons, we

have used either source or executable code provided by the au-
thors. All images were saved to disk to guarantee similar color
quantization and later compared based on PSNR (error aver-
aged over pixels and color channels before computing the log-
arithm). In addition, all measurements were performed on full-
resolution images (borders included). We did not use any of the
test images in our training phase. Table 1 shows the average
PSNR for the traditional Kodak [Fra99] and McMaster [ZWBL11b]
datasets, as well as for the two datasets of Gharbi et al. (vdp and
moiré) [GCPD16]. The techniques on the top portion of Table 1
perform demosaicing for the Bayer pattern, while the ones on
the bottom portion perform demosaicing for non-Bayer CFAs.
Our 4× 4 noise-free CFA and demosaicing solution (last row of
Table 1) surpasses all existing methods in all four datasets (even
for Kodak and McMaster, from which no images were used for
training). We also trained our architecture using the Bayer pat-
tern, i.e., only optimizing the decoder (Fig. 3). Our demosaicing
network for the Bayer pattern also outperforms all previous tech-
niques for the Kodak, McMaster, and vdp datasets, and got very
close to Gharbi et al.’s [GCPD16] in the moiré dataset. These re-
sults clearly demonstrate the effectiveness of our autoencoder
architecture and the advantage of jointly optimizing CFA design
and demosaicing.

Fig. 5 compares the reconstruction quality of our 4 × 4
noise-free model with the state-of-the-art demosaicing tech-
niques [Cha16, MBP∗09, HST∗14, GCPD16]. For such compari-
son, we have used code provided by the authors for their noise-
free trained models. Chakrabarti’s method [Cha16] does not re-
construct the full patch, so we measure the PSNR only for the re-
constructed area. The examples in Fig. 5 are from Gharbi et al.’s
datasets. Note how our method better handles high-frequency
information, being less susceptible to aliasing artifacts than
other techniques (see the stripped shirt example in Fig. 5). Ad-
ditional examples can be found in the supplementary materials.

Chakrabarti [Cha16] trained and tested his model using the
dataset of Shi and Funt [SF10]. We also tested our 4×4 noise-free
CFA on the same test images. Chakrabarti [Cha16] achieves an
average PSNR of 41.50, while our model achieves 48.96, a signifi-
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Figure 5: Comparison of reconstruction quality of our 4×4 noise-free method and the state-of-the-art techniques (best PSNR values shown
in bold). Patches from Gharbi et al.’s datasets [GCPD16]. Better visualized in the digital version.

cant improvement in reconstruction quality, even though no im-
ages from Shi and Funt’s dataset were used for training our CFA.

Table 2 shows the average running times of the state-of-the-
art techniques for reconstructing images from the Kodak dataset
(resolution of 768×512). All measurements were made on an In-
tel Core i7-2660 CPU and GeForce GTX TITAN X GPU. Our tech-
nique is slightly slower than other GPU-based implementations,
but still much faster than methods based on compressive sens-
ing [MBP∗09] or optimization schemes [HST∗14].

Running Times (seconds)
Chakrabarti (GPU) [Cha16] 0.09
Gharbi et al. (GPU) [GCPD16] 0.16
Our 4x4 (GPU) 0.34
Mairal et al. (CPU) [MBP∗09] 565.23
Heide et al. (CPU) [HST∗14] 652.63

Table 2: Average running times of state-of-the-art techniques for
reconstructing images from the Kodak dataset.
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4.2. Reconstruction in the presence of noise

The idea of jointly performing demosaicing and denoising has
been explored by many works [Con11, CM12, HvLP12, KHKP16,
GCPD16,Cha16]. Enhancing our autoencoder with denoising ca-
pabilities only requires feeding the network with patches cor-
rupted by (artificial) noise during the training phase, while com-
paring the network’s output to the noise-free images. To demon-
strate the flexibility of our architecture, we have trained the same
network structure from scratch, using the same datasets used for
training our 4 × 4 noise-free CFA. This time, however, each in-
put patch was corrupted by additive Gaussian noise. Although
in linear space camera noise should be modeled as a combina-
tion of Poissonian and Gaussian noise [FTKE08], according to
Jeon and Dubois [JD13], for white-balanced, gamma-corrected
images (such as the case of the vdp and moiré datasets [GCPD16]
used for training) one can model noise as signal-independent
white Gaussian noise. By corrupting the images with Gaussian
noise with a varying standard deviation randomly picked from
the set {0,4,8,12,16,20}, we avoid the need of specialized net-
works for each noise level (such as in Chakrabarti [Cha16]), train-
ing a single model that handles a large range of noise variance.

Table 3 compares the PSNR for our 4 × 4 CFA for noisy
data (Fig. 2 (right)) against existing techniques. The quality
of our reconstructions surpasseses previous approaches in all
datasets, for all noise levels. Moreover, unlike Gharbi et al.’s ap-
proach [GCPD16], ours does not require an estimate of the noise
level, and thus the quality of our denoising results are not depen-
dent on the accuracy of any noise estimation step.

Fig. 6 compares our results to the the state-of-the-art tech-
niques. Note that our method performs an optimization that
jointly improves CFA design, demosaicing, and denoising. As a
result, it can reduce noise without oversmoothing the images,
generating higher-quality reconstructions. Our CFA pattern for
noisy datasets can be seen in Fig. 2 (right). Additional examples
can be found in the supplementary materials.

5. Discussion

We evaluated several network architectures beyond the ones pre-
sented, and some observations worthy mentioning:

Deepness versus wideness: We tested shallower and deeper, as
well as thinner and wider networks. Contrary to many works that
claim that deepness is the key for good performance, we have
found similar results to Zagoruyko and Komodakis [ZK16], sug-
gesting that wideness is as important as deepness.

Skip connections: We have used skip connections to stack sub-
mosaic images for the decoder, which improved the performance
and convergence of the network. We have also tested different ar-
chitectures using distinct dispositions, observing no correlation
between the number of connections and higher PSNR.

Additional input: By providing additional information to the de-
mosaicing (decoder) scheme, our network is capable of learning
faster and achieving better reconstructions. In addition to the
mosaic image, we have also provided the CFA submosaics, and
their linearly interpolated versions. This simplifies the training,

Noise σ= 4 Kodak McMaster vdp moiré
[Cha16] 28.59 26.32 21.96 21.72
[CFZ14] 30.70 28.34 25.34 27.71
[Con11] 34.15 31.19 27.86 29.30
[CM12] 34.43 31.53 28.19 29.69
[GCPD16] 36.90 36.02 31.61 33.31

Our 4x4 noise 38.01 36.59 32.83 34.54
Noise σ= 8 Kodak McMaster vdp moiré
[Cha16] 26.63 25.16 20.79 20.52
[CFZ14] 27.26 25.56 23.75 25.39
[Con11] 29.83 28.50 26.26 27.20
[CM12] 30.14 28.84 26.56 27.52
[GCPD16] 34.19 33.97 29.87 31.34

Our 4x4 noise 35.08 34.39 31.16 32.50
Noise σ= 12 Kodak McMaster vdp moiré
[Cha16] 25.59 24.32 20.22 20.04
[CFZ14] 24.62 23.41 22.20 23.34
[Con11] 26.74 26.16 24.59 25.19
[CM12] 27.07 26.50 24.87 25.49
[GCPD16] 32.40 32.41 28.39 29.87

Our 4x4 noise 33.31 32.90 29.73 31.02
Noise σ= 16 Kodak McMaster vdp moiré
[Cha16] 25.28 23.96 20.16 20.26
[CFZ14] 22.60 21.68 20.81 21.65
[Con11] 24.44 24.23 23.06 23.45
[CM12] 24.76 24.56 23.32 23.74
[GCPD16] 31.07 31.19 27.18 28.73

Our 4x4 noise 32.17 31.81 28.56 29.88
Noise σ= 20 Kodak McMaster vdp moiré
[Cha16] 24.60 23.40 19.98 20.31
[CFZ14] 20.93 20.24 19.60 20.23
[Con11] 22.61 22.62 21.70 21.96
[CM12] 22.93 22.94 21.95 22.23
[GCPD16] 30.00 30.15 26.17 27.80

Our 4x4 noise 31.20 30.87 27.57 28.93

Table 3: Comparison of our model with existing methods for joint
denoise and demosaic. The numbers show the average PSNR val-
ues of reconstructions for four datasets corrupted by noise of dif-
ferent intensities. Our model outperforms all other techniques in
all four datasets and for all noise intensities.

as the network does not need to learn to separate each color sub-
mosaic, nor the interpolation kernels from scratch.

Masks: We use disjoint binary masks to enforce pattern repe-
tition, and to be able to handle images of arbitrary sizes. But
the masks can be used to impose additional constraints. For in-
stance, one can use them to find 2× 2 patterns with only three
colors (as in the Bayer pattern), or to enforce designs that follow
specific patterns, such as blue-noise characteristics [Con10], or
diagonal designs [LP05, BLLY16].

CFA pattern size: Our architecture can train CFAs with an arbi-
trary number of color filters, and we have opted to train designs
larger than the traditional 2 × 2 patterns. Training bigger-sized
CFA patterns has several advantages. First, they contain a larger
number of distinct colors and thus provide more coverage dur-
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σ= 4, PSNR: 36.05 PSNR: 27.04 PSNR: 34.74 PSNR: 36.46 PSNR: 37.97

σ= 12, PSNR: 26.55 PSNR: 24.37 PSNR: 27.00 PSNR: 30.77 PSNR: 32.08

σ= 12, PSNR: 26.85 PSNR: 23.84 PSNR: 27.39 PSNR: 33.84 PSNR: 34.21

σ= 20, PSNR: 22.49 PSNR: 22.87 PSNR: 23.17 PSNR: 31.62 PSNR: 32.21

σ= 12, PSNR: 26.70 PSNR: 24.94 PSNR: 27.08 PSNR: 31.40 PSNR: 32.85

σ= 20, PSNR: 22.37 PSNR: 24.03 PSNR: 22.99 PSNR: 29.17 PSNR: 30.64

Corrupted Image Chakrabarti [Cha16]
Condat and

Mossadegh [CM12]
Gharbi et al. [GCPD16] Our 4x4 noise Ground Truth

Figure 6: Comparison of the reconstructions obtained by our method and state-of-the-art techniques that jointly perform denoising and
demosaicing (best PSNR in bold). The input images were corrupted with Gaussian noise (left column), whose level is indicated by the
standard deviation σ (in RGB [0,255] units). Images from the Kodak dataset. Better visualized in the digital version.

© 2018 The Author(s)

Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.



B. Henz & E. S. L. Gastal & M. M. Oliveira / Deep Joint Design of Color Filter Arrays and Demosaicing

PSNR: 17.65 PSNR: 17.68 PSNR: 22.42 PSNR: 21.30 PSNR: 20.62

PSNR: 18.43 PSNR: 17.88 PSNR: 19.35 PSNR: 19.66 PSNR: 20.14

Chakrabarti [Cha16] Mairal et al. [MBP∗09] Heide et al. [HST∗14] Gharbi et al. [GCPD16] Our 4x4 noise-free Ground Truth

Figure 7: Images with extreme high-frequencies are challenging for all demosaicing methods, whose results exhibit aliasing artifacts. These
patches are from the moiré dataset [GCPD16].

ing sampling of the color space, allowing the CNN to make bet-
ter use of correlations among colors. Second, smaller CFAs are
more susceptible to aliasing due to pattern repetition, while big-
ger CFAs allow the learning of more stochastic patterns. Third,
from an optimization perspective, the 2×2 search-space is a sub-
space of the 4×4 search-space, meaning that a 4×4 CFA can learn
a 2×2 pattern if it is advantageous. For instance, a careful inspec-
tion of Fig. 2 reveals that each of our 4×4 CFAs actually consists
of two side-by-side copies of a 4×2 pattern. The small differences
among the corresponding RGB coefficients in the 4×2 patterns in
each CFA are fairly small, and are likely to be reduced with longer
training. This suggests that 4× 2 patterns are the most efficient
tileable representations for CFAs achievable with a 4×4 pattern.

Manufacturing our CFAs: Our encoder optimizes the CFA colors
over the full RGB space. Although our 4×4 CFAs do not use the
standard Bayer color filters, the colors used in our patterns are
a linear combination of these standard filters, which should sim-
plify the manufacturing process. Alternatively, Chiulli [Chi89] has
patented a technique for creating color filters from any combi-
nations of red, green, blue, cyan, yellow and magenta dies. More
recently, SILIOS Technologies has developed a manufacturing
technique called COLOR SHADES® for producing band-pass fil-
ters [SIL17]. This technology combines thin film deposition and
micro/nano-etching processes onto a silica substrate [LWTG14].
COLOR SHADES® provides band-pass filters in the visible range
from 400 nm to 700 nm (as well as in the IR range). Lapray et
al. [LWTG14] describe the construction of a multispectral CFA us-
ing eight optical filter bands produced with COLOR SHADES®,
and compare the simulated and measured responses of the indi-
vidual filters. This technology could be used to produce our CFAs.

Demosaicing of extremely high-frequency content is challeng-
ing to all demosaicing methods. Fig. 7 shows examples of two
image patches the for which all techniques, including ours, are
unable to obtain high-quality image reconstructions. Such prob-
lems are due to aliasing, when color high-frequency details can-
not be appropriately sampled by the CFA [GCPD16]. Note that

the artifacts in the reconstructions by the techniques of Mairal
et al. and Gharbi et al. are similar. Both use the same Bayer CFA,
indicating that such moiré artifacts are due to CFA color subsam-
pling, rather than to the demosaicing method itself.

Before arriving at the described architecture, we have sys-
tematically tried many alternatives. Such exploration included
the use of L1 and L2 regularizers, different optimizers (Adadelta
and Adam), dropouts [SHK∗14], various configurations of skip-
connections, different sizes of CFA patterns (including 6×6 and
8× 8), and trainable/fixed interpolation layers. While testing all
combinations of these elements is unfeasible, we have made ex-
tensive experimentation. The results of these tests indicated that
the architecture for the 4 × 4 patterns (both for noise-free and
noisy patterns) achieved the overall best PSNR results. Note that
the CFA designs learned for the noise-free and for the noisy cases
are similar, one being a shifted version of the other. This indicates
that those colors were not found by chance, and they indeed pro-
vide lower reconstruction errors.

6. Conclusion

We have presented a convolutional neural network architecture
for performing joint design of color filter arrays, demosaicing,
and denoising. By expressing the CFA projection and linear inter-
polation as convolutional layers, our network finds the filter pat-
tern and corresponding demosaicing method that jointly min-
imize image reconstruction error. The patterns and algorithms
produced by our method provide high-quality color reconstruc-
tions, surpassing the state-of-the-art techniques on all standard
demosaicing datasets.

Our approach can also reconstruct high-quality images from
noisy data, outperforming existing techniques for all noise lev-
els, without requiring any information about the noise level in
the input data. In addition, it can be used to obtain effective de-
mosaicing strategies for existing CFA patterns. Given its flexibil-
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ity, our architecture might possibly be adapted for the design of
CFAs for capturing HDR content with a single shot.
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Appendix A: RGB Weights and Bias Terms

Fig. 8 shows the RGB and bias weights (~wi = [wi r , wi g , wi b , wi t ])
for our 4 × 4 CFAs for noise-free and noisy data. The values of
wi r , wi g , wi b , and wi t are shown from top to bottom inside each
color filter cell.

Our 4x4 noise-free Our 4x4 noise

Figure 8: Our 4×4 patterns for noise-free and for noisy data. The
color filters are expressed using four coefficients: R, G, B and a bias
term, respectively (shown inside each cell).

Appendix B: Construction of Binary Masks

A CFA is a periodic structure, with the CFA pattern corresponding
to one period. Given an M×N CFA pattern, this will result in M N
(M times N ) distinct M×N binary masks for the CFA pattern (i.e.,
one binary mask for each CFA element). Each such binary mask
has a single non-zero element (with value 1), at the position cor-
responding to the given CFA element. Thus, in a M ×N CFA, the
CFA element at position (i , j ), 1 ≤ i ≤ M , 1 ≤ j ≤ N , has a cor-
responding binary mask containing zeros everywhere, except at
mask position (i , j ), which contains the value 1. Similar to a com-
plete CFA, the actual binary masks cover the entire image, being
obtained by tiling the corresponding CFA-element binary masks.
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